西瓜书读书笔记(二)-模型评估与选择

本文详细介绍了《机器学习》中关于模型评估与选择的内容,包括经验误差与过拟合的概念,指出过拟合可能源于学习能力过强;评估方法如留出法、交叉验证法和自助法的应用;强调了性能度量和模型选择的重要性;并探讨了偏差与方差在影响模型泛化性能中的作用。
摘要由CSDN通过智能技术生成

全部笔记的汇总贴:《机器学习》西瓜书-读书笔记汇总贴

一、经验误差与过拟合

我们把学习器的实际预测输出与样本的真实输出之间的差异称为 “误差” (error),学习器在训练集上的误差称为“训练误差”(training error)或 “经验误差”,在新样本上的误差称为“泛化误差”。显然我们的目的时找一个泛化误差小的学习器,但因为我们事先不知道新样本是怎样的,所以只能努力使经验误差最小化。但是当经验误差足够小,甚至对所有的训练样本都分类正确,会产生过拟合

多种因素可能导致过拟合,其中最常见的情况是由于学习能力过于强大,以至于把训练样本所包含的不太一般的特性都学到了,而欠拟合则通常是由于学习能力低下而造成的欠拟合比较容易克服,例如在决策树学习中扩展分支、 在神经网络学习中增加训练轮数等,而过拟合则很麻烦。

二、评估方法

  1. 留出法:将数据集分为训练集和测试集。
  2. 交叉验证法:例如分成1、2、3、4四部分,我们可以先以1、2、3为训练集,以4为测试集;然后以1、2、4为训练集,以3为测试集…
  3. 自助法:以自主采用法为基础,适用于数据集较小、难以有效划分训练/测试集时很有用;此外他也能从原始数据中产生多个不同的训练集,对集成学习很有帮助。

调参和模型选择也同样重要,大多数的学习算法的参数都需要设定,参数的细小差别可能会对产生的模型性能产生显著的变化。

三、性能度

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值