《百面机器学习》读书笔记(六)-概率图模型

本文是《百面机器学习》读书笔记的第六部分,聚焦概率图模型。介绍了概率图模型如何用图表示数据和知识,讲解了贝叶斯网络、马尔可夫网络的联合概率分布,以及概率图模型在机器学习中的应用,如朴素贝叶斯、最大熵模型、生成式与判别式模型的区别,同时还探讨了隐马尔可夫模型在中文分词中的应用和最大熵马尔可夫模型的标注偏置问题。此外,还讨论了主题模型如pLSA和LDA,以及如何确定LDA的主题个数。
摘要由CSDN通过智能技术生成

全部笔记的汇总贴:《百面机器学习》-读书笔记汇总

对于这一部分不太熟悉的,可以看看这篇文章里的视频学习一下:白板推导系列笔记(九)-概率图模型

对于一个实际问题,我们希望能够挖掘隐含在数据中的知识。概率图模型构建了这样一幅图,用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系,最后基于这样的关系图获得一个概率分布,非常“优雅”地解决了问题。

概率图中的节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中有向边表示单向的依赖,无向边表示相互依赖关系。

概率图模型分为贝叶斯网络(Bayesian Network)和马尔可夫网络(Markov Network)两大类。贝叶斯网络可以用一个有向图结构表示,马尔可夫网络可以表示成一个无向图的网络结构。更详细地说,概率图模型包括了朴素贝叶斯模型、最大熵模型、隐马尔可夫模型、条件随机场、主题模型等,在机器学习的诸多场景中都有着广泛的应用。

一、概率图模型的联合概率分布

概率图模型最为“精彩”的部分就是能够用简洁清晰的图示形式表达概率生成的关系。而通过概率图还原其概率分布不仅是概率图模型最重要的功能,也是掌握概率图模型最重要的标准。

  • ★☆☆☆☆ 能否写出图中贝叶斯网络的联合概率分布?
    在这里插入图片描述

由图可见,在给定A的条件下B和C是条件独立的,基于条件概率的定义可得 P ( C ∣ A , B ) = P ( B , C ∣ A ) P ( B ∣ A ) = P ( B ∣ A ) P ( C ∣ A ) P ( B ∣ A ) = P ( C ∣ A ) P(C|A,B)=\frac{P(B,C|A)}{P(B|A)}=\frac{P(B|A)P(C|A)}{P(B|A)}=P(C|A) P(CA,B)=P(BA)P(B,CA)=P(BA)P(BA)P(CA)=P(CA)
同理,在给定B和C的条件下A和D是条件独立的,可得 P ( D ∣ A , B , C ) = P ( A , D ∣ B , C ) P ( A ∣ B , C ) = P ( A ∣ B , C ) P ( D ∣ B , C ) P ( A ∣ B , C ) = P ( D ∣ B , C ) P(D|A,B,C)=\frac{P(A,D|B,C)}{P(A|B,C)}=\frac{P(A|B,C)P(D|B,C)}{P(A|B,C)}=P(D|B,C) P(DA,B,C)=P(AB,C)P(A,DB,C)=P(AB,C)P(AB,C)P(DB,C)=P(DB,C)
所以,联合概率 P ( A , B , C , D ) = P ( A ) P ( B ∣ A ) P ( C ∣ A , B ) P ( D ∣ A , B , C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A ) P ( D ∣ B , C ) P(A,B,C,D)=P(A)P(B|A)P(C|A,B)P(D|A,B,C)\\=P(A)P(B|A)P(C|A)P(D|B,C) P(A,B,C,D)=P(A)P(BA)P(CA,B)P(DA,B,C)=P(A)P(BA)P(CA)P(DB,C)

  • ★☆☆☆☆ 能否写出上图中马尔可夫网络的联合概率分布?

在马尔可夫网络中,联合概率分布的定义为 P ( x ) = 1 Z ∏ Q ∈ C ψ Q ( x Q ) P(x)=\frac1Z\prod_{Q\in C}\psi_Q(x_Q) P(x)=Z1

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值