机器学习-白板推导系列笔记(九)-概率图模型

本文详细介绍了概率图模型的基础知识,包括有向图中的贝叶斯网络和无向图中的马尔可夫网络。探讨了D划分、马尔可夫毯等关键概念,并讨论了变量消除法和信念传播算法在推断中的应用,为理解和应用概率图模型提供了深入理解。
摘要由CSDN通过智能技术生成

此文章主要是结合哔站shuhuai008大佬的白板推导视频:概率图模型_297min

全部笔记的汇总贴:机器学习-白板推导系列笔记

PS:本次课程所提及的内容,在后面的章节都有讲解,可以先跳过,然后在看完粒子滤波这一章的时候进行回顾复习,我到时候也会在那一章的最后放一个传送门过来的。

一、概述

(一)概率图模型的知识体系

概 率 图 { R e p r e s e n t a t i o n ( 表 示 ) { 有 向 图    B e y e s i a n    N e t w o r k 高 斯 图 ( 连 续 ) { G a u s s i a n    B N G a u s s i a n    M N 无 向 图    M a r k o v    N e t w o r k I n f e r e n c e ( 推 断 ) { 精 确 推 断 近 似 推 断 { 确 定 性 近 似 ( 变 分 推 断 ) 随 机 近 似 ( M C M C ) L e a r n i n g ( 学 习 ) { 参 数 学 习 { 完 备 数 据 { 有 向 无 向 隐 变 量 → E M 结 构 学 习 概率图\left\{\begin{matrix} Representation(表示)\left\{\begin{matrix} 有向图\; Beyesian\; Network\\ 高斯图(连续)\left\{\begin{matrix} Gaussian\; BN\\ Gaussian\; MN \end{matrix}\right.\\ 无向图\; Markov\; Network \end{matrix}\right.\\ Inference(推断)\left\{\begin{matrix} 精确推断\\ 近似推断\left\{\begin{matrix} 确定性近似(变分推断)\\ 随机近似(MCMC) \end{matrix}\right. \end{matrix}\right.\\ Learning(学习)\left\{\begin{matrix} 参数学习\left\{\begin{matrix} 完备数据\left\{\begin{matrix} 有向\\ 无向 \end{matrix}\right.\\ 隐变量\rightarrow EM \end{matrix}\right.\\ 结构学习 \end{matrix}\right. \end{matrix}\right. Representation()BeyesianNetwork{ GaussianBNGaussianMNMarkovNetworkInference(){ MCMCLearning(){ EM

(二)基本规则

概率图模型使用图的形式来表示概率分布,下面是几个随机变量分布的一些规则:

S u m R u l e : p ( x 1 ) = ∫ p ( x 1 , x 2 ) d x 2 P r o d u c t R u l e : p ( x 1 , x 2 ) = p ( x 1 ∣ x 2 ) p ( x 2 ) C h a i n R u l e : p ( x 1 , x 2 , ⋯   , x p ) = ∏ i = 1 p p ( x i ∣ x i + 1 , x i + 2 , ⋯   , x p ) B a y e s i a n R u l e : P ( x 2 ∣ x 1 ) = P ( x 1 , x 2 ) P ( x 1 ) = P ( x 1 , x 2 ) ∫ P ( x 1 , x 2 ) d x 2 = P ( x 2 ) P ( x 1 ∣ x 2 ) ∫ P ( x 2 ) P ( x 1 ∣ x 2 ) d x 2 Sum Rule:p(x_{1})=\int p(x_{1},x_{2})\mathrm{d}x_{2}\\ Product Rule:p(x_{1},x_{2})=p(x_{1}|x_{2})p(x_{2})\\ Chain Rule:p(x_{1},x_{2},\cdots ,x_{p})=\prod_{i=1}^{p}p(x_{i}|x_{i+1},x_{i+2},\cdots ,x_{p})\\ Bayesian Rule:P(x_{2}|x_{1})=\frac{P(x_{1},x_{2})}{P(x_{1})}=\frac{P(x_{1},x_{2})}{\int P(x_{1},x_{2})\mathrm{d}x_{2}}=\frac{P(x_{2})P(x_{1}|x_{2})}{\int P(x_{2})P(x_{1}|x_{2})\mathrm{d}x_{2}} SumRule:p(x1)=p(x1,x2)dx2ProductRule:p(x1,x2)=p(x1x2)p(x2)ChainRule:p(x1,x2,,xp)=i=1pp(xixi+1,xi+2,,xp)BayesianRule:P(x2x1)=P(x1)P(x1,x2)=P(x1,x2)dx2P(x1,x2)=P(x2)P(x1x2)dx2P(x2)P(x1x2)

(三)简化运算假设

在链式规则中如果数据的维度过高,就会出现计算复杂的困境,因此我们需要对此做出一些简化:

①    ①\; 相互独立的假设: P ( x 1 , x 2 , ⋯   , x p ) = ∏ i = 1 p P ( x i ) P(x_{1},x_{2},\cdots ,x_{p})=\prod_{i=1}^{p}P(x_{i}) P(x1,x2,,xp)=i=1pP(xi)
朴素贝叶斯中的条件独立性假设: P ( x ∣ y ) = ∏ i = 1 p P ( x i ∣ y ) P(x|y)=\prod_{i=1}^{p}P(x_{i}|y) P(xy)=i=1pP(xiy)
②    ②\; M a r k o v    P r o p e r t y : x j ⊥ x i + 1 ∣ x i , j < i Markov\; Property:x_{j}\perp x_{i+1}| x_{i},j< i MarkovProperty:xjxi+1xi,j<i,HMM中的齐次Markov假设;
③    ③\; 条件独立性假设: x A ⊥ x B ∣ x C , x A 、 x B 、 x C x_{A}\perp x_{B}|x_{C},x_{A}、x_{B}、x_{C} xAxBxC,xAxBxC是集合,且不相交。

二、有向图-贝叶斯网络

(一)基本结构

已知联合概率分布中各个随机变量的依赖关系,可以根据拓扑排序(依赖关系)得到一个有向图。而如果已知一个有向图,可以直接得到联合概率分布的因子分解:

P ( x 1 , x 2 , ⋯   , x p ) = ∏ i = 1 p P ( x i ∣ x p a r e n t ( i ) ) P(x_{1},x_{2},\cdots ,x_{p})=\prod_{i=1}^{p}P(x_{i}|x_{parent(i)}) P(x1,x2,,xp)=i=1pP(xixparent(i))

在局部的任何三个节点,可以有以下三种结构:

  • head to tail
    head to tail

这种结构满足:

A ⊥ C ∣ B ⇔ 若 B 被 观 测 , 则 路 径 被 阻 塞 A\perp C|B\Leftrightarrow 若B被观测,则路径被阻塞 ACBB

通过因子分解和链式规则可以进行证明:

P ( A , B , C ) = P ( A ) P ( B ∣ A ) P ( C ∣ B ) ⏟ 因 子 分 解 = P ( A ) P ( B ∣ A ) P ( C ∣ B , A ) ⏟ 链 式 法 则 ⇒ P ( C ∣ B ) = P ( C ∣ B , A ) ⇒ P ( C ∣ B ) P ( A ∣ B ) = P ( C ∣ A , B ) P ( A ∣ B ) ⇒ P ( C ∣ B ) P ( A ∣ B ) = P ( C , A ∣ B ) ⇒ C ⊥ A ∣ B P(A,B,C)=\underset{因子分解}{\underbrace{P(A)P(B|A)P(C|B)}}=\underset{链式法则}{\underbrace{P(A)P(B|A)P(C|B,A)}}\\ \Rightarrow P(C|B)=P(C|B,A)\\ \Rightarrow P(C|B)P(A|B)=P(C|A,B)P(A|B)\\ \Rightarrow P(C|B)P(A|B)=P(C,A|B)\\ \Rightarrow C\perp A|B P(A,B,C)= P(A)P(BA)P(CB)= P(A)P(BA)P(CB,A)P(CB)=P(CB,A)P(CB)P(AB)=P(CA,B)P(AB)P(CB)P(AB)=P(C,AB)CAB

  • tail to tail
    tail to tail
    这种结构满足:

A ⊥ C ∣ B ⇔ 若 B 被 观 测 , 则 路 径 被 阻 塞 A\perp C|B\Leftrightarrow 若B被观测,则路径被阻塞 ACBB

通过因子分解和链式规则可以进行证明:

P ( A , B , C ) = P ( A ∣ B ) P ( B ) P ( C ∣ B ) ⏟ 因 子 分 解 = P ( B ) P ( A ∣ B ) P ( C ∣ A , B ) ⏟ 链 式 法 则 ⇒ P ( C ∣ B ) = P ( C ∣ A , B ) ⇒ P ( C ∣ B ) P ( A ∣ B ) = P ( C ∣ A , B ) P ( C ∣ B ) ⇒ P ( C ∣ B ) P ( A ∣ B ) = P ( A , C ∣ B ) ⇒ C ⊥ A ∣ B P(A,B,C)=\underset{因子分解}{\underbrace{P(A|B)P(B)P(C|B)}}=\underset{链式法则}{\underbrace{P(B)P(A|B)P(C|A,B)}}\\ \Rightarrow P(C|B)=P(C|A,B)\\ \Rightarrow P(C|B)P(A|B)=P(C|A,B)P(C|B)\\ \Rightarrow P(C|B)P(A|B)=P(A,C|B)\\ \Rightarrow C\perp A|B P(A,B,C)= P(AB)P(B)P(CB)

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值