【论文泛读128】CausalNLP:文本因果推理的实用工具包

贴一下汇总贴:论文阅读记录

论文链接:《CausalNLP: A Practical Toolkit for Causal Inference with Text》

一、摘要

绝大多数现有的因果推断方法和系统都假设所有考虑的变量都是分类的或数字的(例如,性别、价格、血压、入学率)。在本文中,我们介绍了 CausalNLP,这是一个从观察数据推断因果关系的工具包,除了传统的数值和分类变量外,还包括文本。CausalNLP 使用元学习器进行治疗效果估计,并支持使用原始文本及其语言属性作为治疗和“受控”变量(例如,混杂因素)。该库是开源的,可从以下网址获得:github

二、结论

在这篇论文中,我们提出了CausalNLP,一个基于观察数据的文本进行因果推理的Python库。基于元学习者,CausalNLP是一个多功能的工具包,支持将文本及其语言属性作为治疗、结果、混杂物或因果推理研究的中介物包括在内。因果关系和自然语言处理的交集是一个新的研究领域,具有快速变化的景观,成熟的未来工作的机会。例子包括更好地解释因果推论和特征和更好地理解元学习者表现与文本。例如,虽然s -学习者表现良好,但我们确实观察到其他元学习者(例如t学习者)在因果影响如何在不同观察中变化方面,能够更好地识别异质性治疗效果。

第一次见到论文里贴代码的…可读性很强哈哈哈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值