题目描述
大家知道,给出正整数n,则1到n这n个数可以构成n!种排列,把这些排列按照从小到大的顺序(字典顺序)列出,如n=3时,列出1 2 3,1 3 2,2 1 3,2 3 1,3 1 2,3 2 1六个排列。
任务描述:
给出某个排列,求出这个排列的下k个排列,如果遇到最后一个排列,则下1排列为第1个排列,即排列1 2 3…n。
比如:n = 3,k=2 给出排列2 3 1,则它的下1个排列为3 1 2,下2个排列为3 2 1,因此答案为3 2 1。
任务描述:
给出某个排列,求出这个排列的下k个排列,如果遇到最后一个排列,则下1排列为第1个排列,即排列1 2 3…n。
比如:n = 3,k=2 给出排列2 3 1,则它的下1个排列为3 1 2,下2个排列为3 2 1,因此答案为3 2 1。
输入
第一行是一个正整数m,表示测试数据的个数,下面是m组测试数据,每组测试数据第一行是2个正整数n( 1 <= n < 1024 )和k(1<=k<=64),第二行有n个正整数,是1,2 … n的一个排列。
输出
对于每组输入数据,输出一行,n个数,中间用空格隔开,表示输入排列的下k个排列。
样例输入
3
3 1
2 3 1
3 1
3 2 1
10 2
1 2 3 4 5 6 7 8 9 10
样例输出
3 1 2
1 2 3
1 2 3 4 5 6 7 9 8 10
算法实现:
#include <iostream>
using namespace std;
void swap(int*s,int i,int j){//交换两个元素
int temp;
temp=s[i];
s[i]=s[j];
s[j]=temp;
}
void reverse(int *s, int first, int last){//翻转序列
while (first<last){
swap(s,first++,last--);
}
}
int findmin(int*a,int length){//从排列的右端开始,找出第一个比右边
//数字小的数字的序号j(j从左端开始计算),即 j=max{i|pi<pi+1}
int j;
for(j=length-2;j>=0;j--)
{
if(a[j]<a[j+1])break;
}
return j;
}
void print(int *a,int length)
{
for(int i=0;i<length;i++)
cout<<a[i]<<" ";
cout<<endl;
}
int main()
{
int n;
cin>>n;
while(n-->0){
int i=0,j,k,m,count=0,length,a[2014]={0};
cin>>length>>m;
for(i=0;i<length;i++)
cin>>a[i];
while(count++<m)
{
j=findmin(a,length);
//在pj的右边的数字中,找出所有比pj大的数中
//最小的数字pk,即 k=max{i|pi>pj}(右边的数从右至左是递增的,因此
//k是所有大于pj的数字中序号最大者)
if(j==-1)
{
for(i=0;i<length;i++)
for(k=i;k<length;k++)
if(a[i]>a[k])swap(a,i,k);
}
if(j>=0){
for(i=length-1;i>j;i--)
{
if(a[i]>a[j])break;
}
swap(a,j,i);//for(i=length-1;i>j;i--)
reverse(a,j+1,length-1);//for(i=length-1;i>j;i--)
}
}
print(a,length);//打印第i行;
}
return 0;
}