2023国赛C题“蔬菜类商品的自动定价与补货决策“思路与代码:https://mbd.pub/o/bread/mbd-ZJ6TlJZp
题目
蔬菜类商品在生鲜商超中的保鲜期较短,随着销售时间的增加,品相也会变差。因此,商超通常每天根据历史销售和需求情况进行蔬菜补货。在凌晨3:00-4:00这段时间,商家需要根据价格和单品信息不确定的情况下,做出当日各蔬菜品类的补货决策。定价一般采用“成本加成定价”,对品相变差的商品进行打折销售。准确的市场需求分析对补货和定价决策非常重要。从需求方面看,蔬菜销量与时间相关;从供给方面看,4月至10月蔬菜供应丰富,销售组合需要合理安排。问题背景要求我们建立模型解决补货决策、定价决策和销售组合问题,并考虑历史数据和动态变化的因素。
附件1给出了某商超经销的6个蔬菜品类的商品信息;附件2和附件3分别给出了该商超2020年7月1日至2023年6月30日各商品的销售流水明细与批发价格的相关数据; 附件4给出了各商品近期的损耗率数据。
思路
根据背景分析,我们可以建立以下数学模型来解决问题:
补货决策模型:该模型基于历史销售和需求情况,以及保鲜期和补货时间等因素,预测每个蔬菜品类的补货量。可以考虑使用机器学习算法(如回归模型、决策树模型等)来建立补货数量的预测模型。
定价决策模型:该模型基于蔬菜的成本、供应情况、品相变差以及市场需求等因素,确定每个蔬菜品类的定价。可以采用成本加成定价方法,将成本与一定的加成率相结合,以确保利润最大化。同时,可以考虑运损和品相变差情况,对质量较差的商品进行打折销售。定价决策模型可以考虑使用优化算法(如线性规划、整数规划等)来获取最优定价策略。
需求分析模型:该模型通过对销售数据进行关联分析,探索销量与时间的关系,以及其他相关因素的影响,从而预测蔬菜类商品的市场需求。可以采用关联规则挖掘、时间序列分析等方法,建立需求预测模型。
销售组合安排模型:鉴于蔬菜品种众多和销售空间的限制,该模型旨在通过解决装箱问题,合理安排蔬菜的销售组合,以最大程度满足市场需求。可以采用装箱算法、优化算法等方法来实现。
问题1:
蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。
首先需要提取文件并进行数据分析:
使用以下模型进行分析:
1、线性回归:线性回归模型适用于建立销售量与其他线性相关因素(如时间、价格等)之间的关系。通过拟合线性回归模型,可以得到各品类或单品销售量与这些因素之间的线性关系。
2、非线性回归:当销售量与其他因素之间存在非线性关系时,可以采用非线性回归模型来拟合数据。多项式回归、指数函数拟合等方法可以更灵活地适应不同的非线性关系。
3、时间序列模型:如果销售数据存在时间序列的特性,即销售量与时间相关,可以使用时间序列模型来分析销售趋势和周期性变化。ARIMA模型、季节性模型等可以帮助揭示销售量随时间演变的规律。
4、面板数据模型:当我们需要考虑不同品类或单品之间的相关性时,可以采用面板数据模型。该模型可以同时考虑跨个体和跨时间的相关性,以更准确地估计品类或单品之间的关联关系。
问题2:
蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。
问题3:
考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成 定价的关系,并给出各蔬菜品类未来一周(2023年7月1-7日)的日补货总量和定价策略, 使得商超收益最大。
问题4:
为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据,这些数据对解决上述问题有何帮助,请给出你们的意见和理由。
2-4问的思路以及参考代码在下方链接,每天中午更新,请购买的小伙伴别着急哟
面包多地址:🍞正在为您运送作品详情