2023国赛C题“蔬菜类商品的自动定价与补货决策“思路与代码

2023国赛C题“蔬菜类商品的自动定价与补货决策“思路与代码:https://mbd.pub/o/bread/mbd-ZJ6TlJZp

题目

蔬菜类商品在生鲜商超中的保鲜期较短,随着销售时间的增加,品相也会变差。因此,商超通常每天根据历史销售和需求情况进行蔬菜补货。在凌晨3:00-4:00这段时间,商家需要根据价格和单品信息不确定的情况下,做出当日各蔬菜品类的补货决策。定价一般采用“成本加成定价”,对品相变差的商品进行打折销售。准确的市场需求分析对补货和定价决策非常重要。从需求方面看,蔬菜销量与时间相关;从供给方面看,4月至10月蔬菜供应丰富,销售组合需要合理安排。问题背景要求我们建立模型解决补货决策、定价决策和销售组合问题,并考虑历史数据和动态变化的因素。
附件1给出了某商超经销的6个蔬菜品类的商品信息;附件2和附件3分别给出了该商超2020年7月1日至2023年6月30日各商品的销售流水明细与批发价格的相关数据; 附件4给出了各商品近期的损耗率数据。

思路

根据背景分析,我们可以建立以下数学模型来解决问题:
补货决策模型:该模型基于历史销售和需求情况,以及保鲜期和补货时间等因素,预测每个蔬菜品类的补货量。可以考虑使用机器学习算法(如回归模型、决策树模型等)来建立补货数量的预测模型。
定价决策模型:该模型基于蔬菜的成本、供应情况、品相变差以及市场需求等因素,确定每个蔬菜品类的定价。可以采用成本加成定价方法,将成本与一定的加成率相结合,以确保利润最大化。同时,可以考虑运损和品相变差情况,对质量较差的商品进行打折销售。定价决策模型可以考虑使用优化算法(如线性规划、整数规划等)来获取最优定价策略。
需求分析模型:该模型通过对销售数据进行关联分析,探索销量与时间的关系,以及其他相关因素的影响,从而预测蔬菜类商品的市场需求。可以采用关联规则挖掘、时间序列分析等方法,建立需求预测模型。
销售组合安排模型:鉴于蔬菜品种众多和销售空间的限制,该模型旨在通过解决装箱问题,合理安排蔬菜的销售组合,以最大程度满足市场需求。可以采用装箱算法、优化算法等方法来实现。

问题1:

蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。
首先需要提取文件并进行数据分析:
在这里插入图片描述

使用以下模型进行分析:
1、线性回归:线性回归模型适用于建立销售量与其他线性相关因素(如时间、价格等)之间的关系。通过拟合线性回归模型,可以得到各品类或单品销售量与这些因素之间的线性关系。
2、非线性回归:当销售量与其他因素之间存在非线性关系时,可以采用非线性回归模型来拟合数据。多项式回归、指数函数拟合等方法可以更灵活地适应不同的非线性关系。
3、时间序列模型:如果销售数据存在时间序列的特性,即销售量与时间相关,可以使用时间序列模型来分析销售趋势和周期性变化。ARIMA模型、季节性模型等可以帮助揭示销售量随时间演变的规律。
4、面板数据模型:当我们需要考虑不同品类或单品之间的相关性时,可以采用面板数据模型。该模型可以同时考虑跨个体和跨时间的相关性,以更准确地估计品类或单品之间的关联关系。

问题2:

蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。

问题3:

考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成 定价的关系,并给出各蔬菜品类未来一周(2023年7月1-7日)的日补货总量和定价策略, 使得商超收益最大。

问题4:

为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据,这些数据对解决上述问题有何帮助,请给出你们的意见和理由。
2-4问的思路以及参考代码在下方链接,每天中午更新,请购买的小伙伴别着急哟
面包多地址:🍞正在为您运送作品详情

根据提供的信息,商超在制定蔬菜类商品补货定价决策时,通常采用"成本加成定价"的方法。这意味着商超会根据商品的成本加上一个固定的加成来确定定价。同时,商超也需要根据销售总量与成本加成定价之间的关系来制定补货计划。 为了使商超的收益最大化,我们可以根据附件2的销售流水明细数据,分析各蔬菜品类的销售总量与成本加成定价的关系。通过观察销售总量与成本加成定价之间的趋势,可以确定不同蔬菜品类的定价策略。例如,销售总量较高的品类可以采取较高的成本加成定价,而销售总量较低的品类可以采取较低的成本加成定价,以吸引更多的消费者。 针对2023年7月1-7日的补货总量和定价策略,我们可以根据附件2的销售流水明细数据,结合销售总量与成本加成定价的关系,预测未来一周各蔬菜品类的销售总量。然后,我们可以根据预测的销售总量和商超补货需求,制定每天的补货总量。对于定价策略,可以根据销售总量与成本加成定价的关系,确定每个品类的定价策略,以达到商超收益最大化的目标。 除了销售流水明细数据,商超还可以收集其他相关数据来进一步完善蔬菜类商品补货定价决策。例如,商超可以收集供应商的进货价格数据,以更准确地计算商品的成本。商超还可以收集与市场需求相关的数据,例如消费者的购买偏好、季节性需求变化等,以便更精确地预测销售总量和调整补货计划。 总之,商超在制定蔬菜类商品自动定价补货决策时,可以根据销售总量与成本加成定价的关系来确定定价策略,并结合销售流水明细数据和其他相关数据来制定补货计划,以达到商超收益最大化的目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值