SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient 阅读笔记

GAN应用到文本生成的问题:

(1)GAN常用于连续的数据,而文本生成是离散的数据。(待补充说明)
(2)GAN只能为完整的序列给出分数,而我们需要衡量不完整序列的分数。

本文模型:

(1)利用了强化学习:state:目前的已经生成的字符;action:下一个生成的字符;
(2)利用了GAN:使用分辨器评估序列的分数,且引导生成器的训练。
(3)利用了Monte Carlo(MC)来评估state-action值。

序列生成对抗网络
基础知识:
G θ G_θ Gθ:参数为θ的生成器;
Y 1 : T Y_{1:T} Y1:T:由生成器生成的 ( y 1 , . . . , y t , . . . , y T ) (y_1,...,y_t,...,y_T) (y1,...,yt,...,yT)
状态s:目前的已经生成的字符 ( y 1 , . . . , y t − 1 ) (y_1,...,y_{t-1}) (y1,...,yt1)
action:下一个选择生成的字符 y t y_t yt
策略模型 G θ ( Y ( 1 : t − 1 ) ) G_θ(Y_(1:t-1)) Gθ(Y(1:t1))是随机的,但是状态转移是确定的(eg:s= Y ( 1 : t − 1 ) Y_(1:t-1) Y(1t1),a= y t y_t yt,则下一个状态 s 1 = Y ( 1 : t ) s^1=Y_(1:t) s1=Y(1:t)的概率为1)

模型框架:
在这里插入图片描述
左图:生成器生成的序列作为negative samples,真实序列作为positive samples来训练判别器;
右图:判别器利用MC计算生成序列的reward,然后利用Policy Gradient来更新生成器的参数。

Policy gradient

当没有中间奖励时,生成器 G θ ( Y ( 1 : t − 1 ) ) G_θ(Y_(1:t-1)) Gθ(Y(1:t1))的目标是从初始状态开始,生成一个奖励最高的序列:
概率*奖励累计和
在执行策略时获得的奖励等于执行该状态下所有行为的概率与对应行为产生的即时奖励的乘积的和。
其中 R T R_T RT表示完整序列的奖励;Q函数:在状态 s 0 s_0 s0下,选择 y 1 y_1 y1字符后,使用策略 G θ G_θ Gθ的累计奖励;
生成器的目标:生成一个序列,使判别器认为它为真。

由此出现了下一个问题:如何计算Q函数?
RL中有:
在这里插入图片描述
但是判别器只能计算完整序列的reward,所以为了计算中间状态的reward,使用了MC Search with policy gradient G β G_β Gβ来模拟采样剩下的T-T个序列字符,重复N次。(本实验中, G β G_β Gβ与生成器一致)
在这里插入图片描述
MC Search:
在这里插入图片描述
roll_out policy:
roll-out 算法是对于当前状态,从每一个可能的动作开始,之后根据给定的策略进行路径采样,根据多次采样的奖励总和来对当前状态的行动值进行估计。当当前估计基本收敛时,会根据行动值最大的原则选择动作进入下一个状态再重复上述过程。在蒙特卡洛控制中,采样的目的是估计一个完整的,最优价值函数,但是roll-out中的采样目的只是为了计算当前状态的行动值以便进入下一个状态,而且这些估计的行动值并不会被保留。在roll-out中采用的策略往往比较简单被称作 roll-out 策略 (roll-out policy)。

小结:即根据多次采样的奖励,用已存在的序列来模拟出一个完整的序列用于计算reward。

由此可得Q函数为:
在这里插入图片描述
到此,生成器可以生成更为真实的序列,然后根据生成器重新训练判别器(交叉熵):
在这里插入图片描述

当判别器更新后,再根据更新后的判别器训练生成器:
推导见后面
公式(6)是基于‘中间奖励为0’和“状态转移确定”的情况。根据公式(6),利用对数采样建立一个无偏估计方程:
在这里插入图片描述
公式(7)仔细推导过程:(关于第三到第四步只是我的个人想法,不知道对不对,希望知道的同学能告诉我)
在这里插入图片描述
然后利用梯度下降更新生成器参数:
在这里插入图片描述
算法:
在这里插入图片描述
生成器:
使用LSTM作为生成器:
在这里插入图片描述
在这里插入图片描述
判别器(CNN):
设输入序列为 x 1 , . . . , x T x_1,...,x_T x1,...,xT,将它们连接成矩阵 ε ( 1 : T ) ε _(1:T) ε(1:T)
在这里插入图片描述
然后根据公式(12)得到特征图(卷积层进行卷积操作):
在这里插入图片描述
然后再卷积层后接入一个最大池化层以及全连接层,优化目标对应公式(5)

附录:
重写RL中的Q函数和状态价值函数:
前提:中间状态奖励 ( R S ) a (R_S)^a (RS)a为0,状态转移确定。
在这里插入图片描述
对于公式(6)的推导:
在这里插入图片描述
利用公式(14)和公式(15)反复迭代。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值