Flux LoRA 是一种用于高效微调(fine-tuning)大型机器学习模型的技术。LoRA 全称为 Low-Rank Adaptation,它的主要目标是减少在微调过程中需要调整的参数量,从而降低计算和内存资源的消耗。
具体来说,LoRA 是一种参数高效微调方法,尤其适用于像 GPT、BERT 等预训练的大型 Transformer 模型。
Flux LoRA 的核心概念:
- 低秩分解: LoRA 的核心思想是,将全连接层权重矩阵的更新限制为低秩的变化。这是通过将大的权重矩阵分解为两个较小的矩阵(低秩矩阵),从而减少需要更新的参数量。
- 正常情况下,微调时,整个模型的权重都会被更新,特别是大型 Transformer 模型,权重数量极大。
- 通过 LoRA,权重矩阵的变化可以用两个小的矩阵表示,即
W = W_0 + ∆W
,其中∆W = A * B
,并且A
和B
是低秩矩阵。
- 减少参数更新: LoRA 只更新少量的参数(低秩矩阵
A
和B
),而预训练模型的原始参数W_0
保持不变。这种方法可以大幅减少训练所需的显存和计算资源,同时保留模型微调后的效果。 - 高效微调: 由于 LoRA 只引入少量额外的参数,微调速度