转圈游戏

题目描述

nn 个小伙伴(编号从 00 到 n-1n−1 )围坐一圈玩游戏。按照顺时针方向给 nn 个位置编号,从 00 到 n-1n−1 。最初,第 00 号小伙伴在第 00 号位置,第 11 号小伙伴在第 11 号位置,……,依此类推。游戏规则如下:每一轮第 00 号位置上的小伙伴顺时针走到第 mm 号位置,第 11 号位置小伙伴走到第 m+1m+1 号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第 n \sim m+1n∼m+1 号位置上的小伙伴走到第 11 号位置,……,第 n-1n−1 号位置上的小伙伴顺时针走到第 m-1m−1 号位置。

现在,一共进行了 10^k10k 轮,请问 xx 号小伙伴最后走到了第几号位置。

输入输出格式

输入格式:

共 11 行,包含 44 个整数 n,m,k,xn,m,k,x ,每两个整数之间用一个空格隔开。

 

输出格式:

11 个整数,表示 10^k10k 轮后 xx 号小伙伴所在的位置编号。

 

输入输出样例

输入样例#1:

10 3 4 5

输出样例#1:

5

题解:

原来在x位置的人,会顺时针移动m *(10^k)次,因为移动n次后会回到原来的位置
移动次数模上n就得到相对移动距离,再加上原来的位置就行了
记得过程中疯狂模,10^k用快速幂算

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<climits>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#define MAXA 10005
using namespace std;
typedef long long LL;
LL FastPow(LL a,LL b,LL MOD) {
	LL Ans = 1;
	while(b) {
		if(b & 1)
		   Ans = Ans * a % MOD;
		a = a * a % MOD;
		b >>= 1;
	}
	return Ans % MOD;
}
LL n,m,k,x;
int main() {
	//freopen("circle.in","r",stdin);
	//freopen("circle.out","w",stdout);
	scanf("%lld %lld %lld %lld",&n,&m,&k,&x);
	printf("%lld",(((m % n) * FastPow(10,k,n)) % n + x) % n);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值