母函数

母函数

普通型母函数
将任意一个序列a0,a1,a2,a3,⋯,an以一个函数的方式联系起来

G(x)=a0x0+a1x1+a2x2+a3x3+⋯+anxn
则称G(x)称为序列的生成函数

普通型母函数可以解决多重集的组合问题,当你要求解组合问题时,可以将组合数与母函数的系数联系起来

例如我们有一个多重集{3⋅a,4⋅b,5⋅c},求他的10-组合数 
我们可以写成母函数的形式

G(x)=(1+x+x2+x3)(1+x+x2+x3+x4)(1+x+x2+x3+x4+x5)
=(1+2x+3x2+4x3+4x4+3x5+2x6+x7)(1+x+x2+x3+x4+x5)
=(1+⋯+3x10+2x10+x10+⋯) 
其中x10的系数为6,所以10-组合数为6

母函数的作用就是把组合时的方法数利用乘法系数的分配操作来直接计算出来

我们再看一个例子,有1g砝码2个,2g砝码1个,4g砝码2个,问称量10g的物体有几种方法

我们可以列出母函数方程

G(x)=(1+x+x2)(1+x2)(1+x4+x8) 
=1+x+2x2+x3+2x4+x5+2x6+x7+2x8+x9+2x10+x11+x12 
所以10g的物体有2种方法

普通型母函数模板:

#include<iostream>
using namespace std;
const int maxn=10001;
int c1[maxn],c2[maxn];//c1表示已经乘开了的多项式的各项的系数 ,c2是中间数组,保存每一次的系数 
int main(){
	int n;
	while(cin>>n){
		for(int i=0;i<=n;i++){//初始化c1全为1 ,c2初始化为0 
			c1[i]=1;
			c2[i]=0;
		}
		for(int i=2;i<=n;i++){//从第i个多项式开始和前面的多项式相乘 
			for(int j=0;j<=n;j++){//从第i个多项式里的第j项开始相乘 
				for(int k=0;k+j<=n;k+=i){//和前面的项相乘后只看指数,指数相加,所对应的项的系数相加 
					c2[j+k]+=c1[j];//c2数组作为中间量,存储第i个多项式和前面已经乘开的多项式相乘后的多项式里每一项的系数 
				}
			}
			for(int j=0;j<=n;j++){
				c1[j]=c2[j];//c2返回给c1 
				c2[j]=0;//将c2清零 
			}
		}
		cout<<c1[n]<<endl;//指数为n的项的系数就是我们要求的方案数 
	}
	return 0;
}

指数型母函数

 解决多重集的排列问题。

比如说:

假设有n个元素,其中a1,a2,····,an互不相同,进行全排列,可得n!个不同的排列。若其中某一元素a1重复了n1次,全排列出来必有重复元素,其中真正不同的排列数应为n!/n1!,即其重复度为n1!

同样理由a1重复了n1次,a2重复了n2次,····,ak重复了nk次,n1+n2+····+nk=n。对于这样的n个元素进行全排列,可得不同排列的个数实际上是

                                                \frac{n!}{n_{1}!n_{2}!n_{3}!...n_{k}!}

对于序列a0,a1,a2,····定义

G(x)=

以前讨论的普通型母函数和指数母函数的差别,就在于前者直接用an作幂级数的系数,而后者则是用指数型母函数:hdu 1521 排列组合作为幂级数的系数,且真正有意义的就是an

 

总的说来,指数型母函数可以说是普通型母函数的衍生,要注意的是两者间的区别,一个是系数,另一个是指数的变化。 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值