Eratosthenes筛法和Euler筛法

Eratosthenes筛法:

Eratosthenes筛选法用到的主要思想:当一个素数被发现时,那么是这个素数倍数的数一定不再是素数,运用这个思路就可以得到时间复杂度为O(N log(log(N)))的算法:

bool check[100000];
int prim[100000];
void Prim(int n){ 
	//埃拉托斯特尼筛选法(素数)
	memset(check,false,sizeof(check));
	int tot=0;
	for(int i=2;i<=n;i++){
		if(!check[i]){
			prim[tot++]=i;
			for(int j=2*i;j<=n;j+=i){
				check[j]=true;
			}
		}
	}
}

在筛选时,我们会发现有些数字会被多次判断,例如:12。2*6和3*4都要排除12一次,那我们就会想去除这个重复。

Euler筛法:

void Euler_prim(int n)
{
    //欧拉筛选法     避免上面筛选法中的重复筛选
    memset(check,false,sizeof(check));
    int tot = 0;
    for(int i = 2;i <= n;i ++)
    {
        if(!check[i]) prim[tot ++] = i;
        for(int j = 0;j < tot;j ++)    //遍历已经找到的素数
        {
            if(i * prim[j] > n) break;   //后面相乘已经超出 n 的范围,没有查找的必要了
            check[i * prim[j]] = true;    //表示这个数字不是素数
            if(i % prim[j] == 0) break;   
        }
    }
}

上面的if(i % prim[j] == 0 ) break;   是完成上面要求的重要条件

我们首先知道一个合数一定可以表示成素数的乘积,那么也一定可以表示成他的最小质因数乘以另外一个数,已知prim数组中的素数是依次递增的,当i满足i%prim[j] ==  0的时候,假如我们继续执行,那么下一个要判断为不是质数的数为:prim[j+1]*i   ,但是我们发现这个数的最小质因数一定是prim[j] ,因为这里的i满足i%prim[j] == 0 ,prim[j]是他的最小质因数,所以这里就和我们上面的要求有矛盾,当我们遇到后面x满足:prim[j] * x = prim[j+1]*i时,又会重新判断一次这个数字

也就是说:当我们遇到上面这个条件就要break  ,时间复杂度变为O(N)
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值