百度飞浆在pycharm中的使用(含官网安装和cuda)

uieGitHub

安装cuda

1 获取版本
我的是 CUDA Toolkit 11.7.1 (August 2022), Versioned Online Documentation
为了防止后期版本不对应,我这里小心谨慎安装了August对应的月份。


C:\Users\89735>nvidia-smi
Mon Dec 19 21:31:28 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 517.00       Driver Version: 517.00       CUDA Version: 11.7     |
|-------------------------------+----------------------+----------------------+
| GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ... WDDM  | 00000000:01:00.0 Off |                  N/A |
| N/A    0C    P0    23W /  N/A |      0MiB /  6144MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

2 下载对应版本
在这里插入图片描述
3 运行命令行查看
在这里插入图片描述
这一步我没做,直接运行命令行也弹出了他的信息,所以先略过。
4 安装cudnn
在这里插入图片描述
也是成功出现两个pass

完结~!

下面进入使用飞浆部分。

UIE的使用

UIE信息抽取

pycharm使用

依次运行这俩

pip install --upgrade paddlenlp
 pip show paddlenlp
 

然后发现运行官方demo报错

# -*- coding:utf-8 -*-f
from pprint import pprint
from paddlenlp import Taskflow

schema = ['时间', '选手', '赛事名称'] # Define the schema for entity extraction
ie = Taskflow('information_extraction', schema=schema, model='uie-base')
ie_en = Taskflow('information_extraction', schema=schema, model='uie-base-en')
pprint(ie("2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!")) # Better print results using pprint

ModuleNotFoundError: No module named ‘paddle‘

参考debug

pip install paddlepaddle

运行一下
在这里插入图片描述
等他下载完以后再去运行我的上面的demo
在这里插入图片描述
在一个程序员等待安装包的时间总是格外的漫长,
焦虑和期待的心情混在一起非常复杂,
期待能运行成功!!!!!
倒计时!

wc!!!成了
牛逼plus掌声在哪里~~~

在这里插入图片描述

but 你以为这样就能运行了吗

年轻人太天真
在这里插入图片描述
bad allocation!!!!
查一下
原来是内存不够的原因!!

点击帮助→设置内存大小

在这里插入图片描述
拿出我的红米k50电竞版。
呼叫小爱同学:1024X4等于多少,?
等于 4096
ok,
就给他设置4个g!

ok让我们重启pycharm,以便我们能放下过去,清空过去的一切,活在当下

不出所料还是报错:
在这里插入图片描述

要不是tmd觉得自己做的研究很有意义,我真就放弃了。
(这不能让导师看到~狗头)
加油吧

2023年1月15日11:29:34 大过年的,一上午就过去了,喝点水 干干家务,
下午给你们更新第二集。

先把自己问题也都发在技术群里问问大佬,看看下午有没有回复

卑微求助一波~~~
O(∩_∩)O哈哈~~~

bug走到尽头 还得是去群里求助哇。~~

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这里是分割线

2023年1月15日11:57:34
喝完水休息会
群里说是机器性能问题
在这里插入图片描述

设置虚拟内存

重启下计算机看看~
2023年1月15日12:13:56

折腾个毛线我直接换了个schema就运行好了

代码:

# -*- coding:utf-8 -*-f
from pprint import pprint
from paddlenlp import Taskflow


schema = '情感倾向[正向,负向]'
ie = Taskflow('information_extraction', schema=schema, model='uie-base')
 # Define the schema for sentence-level sentiment classification
ie.set_schema(schema) # Reset schema
pprint(ie('这个产品用起来真的很流畅,我非常喜欢'))

运行结果:
在这里插入图片描述

参考资源链接:[Win10 PyCharm安装PyTorch CUDA12.2教程:步骤详解](https://wenku.csdn.net/doc/4tefakocf9?utm_source=wenku_answer2doc_content) 要在Windows 10系统上使用PyCharm和Python 3.9安装支持CUDA 12.2的PyTorch版本,您需要按照以下步骤操作,以确保环境配置正确无误: 1. **检查系统兼容性**:首先确保您的NVIDIA显卡驱动程序是最新的,并且支持CUDA 12.2。可以通过设备管理器查看显卡驱动信息来确认。 2. **下载CUDA安装文件**:前往NVIDIA官方网站下载对应Windows 10系统的CUDA 12.2安装文件,例如cuda_10.2.89_441.22_win10.exe。 3. **安装CUDA**:以管理员身份运行CUDA安装程序,并遵循安装向导的指示。在自定义安装步骤,确保选择正确的显卡驱动程序版本,并勾选CUDA开发环境的路径。 4. **下载cuDNN**:从NVIDIA官方网站下载cuDNN v8.2(或与CUDA 12.2兼容的版本)的压缩文件。 5. **安装cuDNN**:解压cuDNN压缩文件,并将解压出的bin、lib和include文件夹复制到CUDA安装目录下的对应文件夹。 6. **设置环境变量**:打开系统属性,进入到环境变量设置,为CUDA路径设置环境变量,包括CUDA_PATH、CUDA_PATH_V10_2,以及指向cuDNN和CUDA Samples安装位置的路径。 7. **验证安装**:完成安装后,打开命令提示符或PowerShell,使用`nvcc --version`和`nvidia-smi`命令验证CUDA安装和显卡驱动状态。 8. **安装PyTorch**:在PyCharm打开您的项目,通过命令行工具(Terminal)安装PyTorch。建议使用conda作为包管理器,确保PyTorch与CUDA版本相匹配。例如,可以使用以下命令安装PyTorch:`conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch`。 9. **配置PyCharm解释器**:在PyCharm配置解释器,确保它指向包PyTorch的conda环境。如果遇到问题,请检查PyCharm的路径设置是否正确。 通过以上步骤,您应该能够在Windows 10系统通过PyCharm安装并配置好支持CUDA 12.2的PyTorch版本,以便顺利进行深度学习项目的开发工作。 为了深入学习和掌握PyTorch在Windows 10环境使用,我建议您查看《Win10 PyCharm安装PyTorch CUDA12.2教程:步骤详解》。这份教程不仅涵盖了上述的安装和配置步骤,还提供了深入的解释和额外技巧,帮助您更全面地理解和利用PyTorch进行机器学习和深度学习项目。 参考资源链接:[Win10 PyCharm安装PyTorch CUDA12.2教程:步骤详解](https://wenku.csdn.net/doc/4tefakocf9?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方-教育技术博主

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值