剑指 Offer II 036. 后缀表达式
题目描述
根据 逆波兰表示法,求该后缀表达式的计算结果。
有效的算符包括 +
、-
、*
、/
。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
- 整数除法只保留整数部分。
- 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i]
要么是一个算符("+"
、"-"
、"*"
或"/"
),要么是一个在范围[-200, 200]
内的整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
- 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
思路解析
1.看逆波兰表达式就可以的简介就可以看出来,就是用栈解决的,当然我们也可以看例子也能看出来
2.如果是数值类,直接压入栈中
3.如果是操作符,那么出栈栈内的两个元素进行操作运算,第二个出栈的是op1,第一个出栈的是op2
4.然后将两个操作数进行加减乘除操作
5.进行操作运算后的得到的运算数重新压入栈中
代码实现
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for(int i = 0;i<tokens.length;i++) {
if(isOp(tokens[i])) {
int op2 = stack.pop();
int op1 = stack.pop();
int temp = 0;
if("+".equals(tokens[i])) {
temp = op1+op2;
}else if("-".equals(tokens[i])) {
temp = op1-op2;
}else if("/".equals(tokens[i])) {
temp = op1/op2;
}else if("*".equals(tokens[i])) {
temp = op1*op2;
}
stack.push(temp);
}else {
stack.push(Integer.parseInt(tokens[i]));
}
}
return stack.pop();
}
public boolean isOp(String str) {
if("+".equals(str)||"-".equals(str)||"*".equals(str)||"/".equals(str)) return true;
else return false;
}
}
欢迎大佬们关注小弟的博客https://blog.csdn.net/qq_41522089