Operational assessment and adaptive selection of micro-Doppler features

Operational assessment and adaptive selection of micro-Doppler features(微多普勒特征的操作评估和自适应选择)

摘要

雷达监视系统面临的主要挑战是如何区分地面目标,尤其是从动物中区分人类以及不同类型的人类活动。为此目的,目标微多普勒信号已显示出很高的自动目标分类率。 但是性能通常仅在接近最佳的工作条件下给出,并使用一种固定的特征集。在过去的几十年中,已经提出了几十种微多普勒特征,而实际上对利用所有可能的特征并不能保证最好的分类表现,并且选择特征的最佳子集取决于场景。在这个论文中,对微多普勒特征及其对系统参数和操作条件的依赖性(例如发射频率,范围和多普勒分辨率,天线目标几何,信噪比和停留时间)进行了全面的研究。提出了能够减少特征的数量的优化分类性能的算法。对于感兴趣的情况进行研究,评估了使用自适应特征选择可实现的性能提升。

Introduction

确定检测到的目标是否构成威胁是雷达监视系统的主要挑战,尤其是在区分动物与人类以及不同类型的人类运动方面。雷达可通过分析目标的微多普勒信号来识别目标和不活跃的部分。 微型多普勒效应是指除了目标的总平移运动之外,还由于振动或旋转运动而引起的与主要多普勒频移有关的频率调制。因此,车辆车轮[3],坦克[4]的踏板或直升机[5]的叶片的周期性旋转运动都会导致微多普勒调制,该调制具有根据目标类型的特定模式。人体运动也会产生独特的微多普勒信号,不仅可以将人类与动物和交通工具区分开,而且还可以区分人类的活动。一只手臂摆动,两只手臂摆动或没有手臂动作走路,慢跑,奔跑,跳跃,拳击,匍匐和爬行都是具有独特的微多普勒信号的各种活动的例子。自杀炸弹袭击者携带炸弹所致的步态变化甚至被证明会导致微多普勒差异,而这种差异可用于检测这种威胁[6]。

通常使用多种机器学习技术来实现对微多普勒信号中特定模式的自动检测,其中首先提取被认为是签名特征的一组特征,然后将其用作某个分类器的输入。 例如支持向量机,k最近邻分类算法(kNN),人工神经网络,高斯混合模型或朴素贝叶斯分类器。在过去的几十年中,已经提出了许多用于微多普勒分类的特征。这些特征可以分为四种基本类型:(i)物理特征[7-9],旨在得出与目标及其运动的物理特征有关的数量; (ii)基于变换的特征[10-12],其利用诸如离散余弦变换(DCT)的变换系数作为特征; (iv)成分分析特征[13-15],其中根据算法(例如主成分分析(PCA))计算出的基础被定义为特征; (iv)语音特征[16-18],通常已设计用于语音信号并用于处理语音信号,但在微多普勒分类中也取得了不错的效果。可能从微多普勒信号中提取了数百个特征。

但是利用所有可能的特征通常不会提供最佳的分类性能。通常只有少数几个功能足以产生良好的性能。 迄今为止,在许多有关微多普勒分类的著作中,据推测是根据研究者的实验和经验选择的少数特征在接近理想的条件下具有良好的性能。使用的特征集多种多样。有趣的是,尽管大多数论文没有使用完全相同的特征集,但是对于所考虑的特定分类问题,所有文献都具有足够的性能。这就引发了一个问题,即对于给定的分类问题,不仅有多少个特征是理想的,(不仅足够)而且具有最佳性能,以及雷达处理器如何系统地选择它们。给定特征区分类别的能力取决于两个主要问题:(i)特征与分类问题的相关性;(ii)从微多普勒信号中准确估计或提取特征的能力。高度相关的功能定义为始终为获得最佳性能所必需的功能,而无关的功能则是在任何情况下都永远不需要的功能。如果无法从数据中准确估计特征,则由于潜在现象而通常可能是高度相关的特征可能变得完全不相关,甚至不利于分类过程。特征选择算法的目的是找到由最大化分类性能的最小特征集组成的最佳子集。这通常是通过在选择可准确估计的相关特征时尝试丢弃冗余(高度相关)特征来实现的。 在涉及微多普勒分析的几项工作中提出的另一种方法是使用降维算法(例如PCA)来缩小特征集大小。降维从根本上与特征选择不同,但是特征的减少是通过实际上形成一个新的,较小的特征集来减少的,这些特征与从现有集合中进行选择相比是最佳不相关的。尽管降维可以最大程度地减少冗余,但是并没有明确的相关性优化,因此降维后的特征不一定意味着最佳的类可分离性。

在这篇文章中,完成了对微多普勒特征及其在人类活动分类中的应用的综合评估。主要有三个方面的贡献:首先,在不同的操作条件下分析了微多普勒特征的鲁棒性,从而填补了文献中的一个关键空白,在现有文献中,大多数结果仅针对接近理想的条件给出。其次,在应用分类器之前,对关键特征选择算法进行了详细讨论,以显示特征选择阶段的必要性和优势(在许多迄今为止发表的许多微多普勒论文中也经常省略)。第三,提出了自适应特征选择,以在变化的操作条件下优化分类性能。

为了实现这些目标,在第2节中,首先介绍了这项工作中使用的微多普勒数据集,然后在第3节中对在变化的操作条件下的微多普勒特征进行了调查和评估。在第4节中讨论了特征选择。在第5节中,比较了在几种分类案例研究中这些方法的性能,并讨论了不同特征的相关性。展示了自适应特征选择的潜在性能提升。结论和未来的工作总结在第六节。

微多普勒信号数据库

可以在很多的传感器上获得微多普勒信号,包括线性调频连续波,脉冲多普勒,超宽带雷达以及声纳。在汽车应用中,通常提取微多普勒信号的频率范围从低至2 GHz至高至77 GHz不等。为了评估各种系统参数、目标活动和天线目标几何形状的微多普勒特征,本研究利用了由Kinect传感器获取的运动捕捉数据生成的模拟微多普勒特征。最早在2006年[19]提出使用视频运动捕获数据来模拟人类微多普勒,在2008年进一步发展 [20],此后已在许多关于微多普勒分类的研究中使用[21-23]。与基于运动学模型的仿真相比,基于运动捕捉的仿真具有一些优势,例如可以从Boulic步行模型中生成的仿真[24,25]。优势包括能够模拟各种活动,而不仅仅是步行,并且可以在生成的微多普勒数据库中捕获各个步态特征的细微差别。例如,Boulic模型主要取决于两个参数,即平均速度和大腿长度。 因此,可以产生用于不同身高和速度的人的签名以用于步行。另一方面,动作捕捉涉及实际记录特定个体的活动; 因此,为相同身高和速度的不同人生成的信号也不同。这使得能够生成信号数据库,该信号数据库在统计上更具可变性,并且可以更好地表示在野外工作的雷达将测量的签名范围。

在这项工作中,Kinect传感器用作运动捕获数据的来源。 为了模拟人的雷达回波,首先将人体分为K个部分,每个部分表示为一个点目标。然后将每个点目标的雷达回波加起来以得出人类的总体回波。在这里插入图片描述
在这里 n n n是脉冲数量; t ^ \hat{t} t^是相对于每个脉冲重复间隔(PRI)的开始的时间; t = PR ⁡ ( n − 1 ) + t t=\operatorname{PR}(n-1)+t t=PR(n1)+t ; τ \tau τ是脉冲宽度; c c c是光速; λ \lambda λ是啁啾斜率; f c f_{c} fc是发射机频率;幅度 a t , i a_{t,i} at,i是根据距离方程计算得出的,该方程除其他因素外还取决于雷达横截面(RCS)。在这项工作中,分别根据球体和椭球体的散射来计算头部和四肢的RCS。

雷达与每个点目标之间的往返时间延迟 t d , i t_{d,i} td,i与范围有关 t d , i = 2 R i / c t_{d,i}=2R_{i}/c td,i=2Ri/c.Kinect传感器同时配备视频和能够进行深度测量的红外传感器,用于跟踪叠加在测试对象图像上的骨骼。Kinect测量提供了该范围随时间变化的估计 R i R_{i} Ri,能够用来计算方程(1)。接下来,对接收到的信号进行快速脉冲压缩,记录每个脉冲的峰值以形成慢速信号 x [ n ] x[n] x[n].短时傅立叶变换(STFT)的平方幅度用于表示时频特征。 信号 x ( n ) x(n) x(n)的离散时间STFT定义为:在这里插入图片描述
w ( m ) w(m) w(m)是一个窗函数,其长度会影响结果的时间和频率分辨率。在这项工作中,使用1024个频率样本,长度为256的汉宁窗和16个样本的重叠生成了频谱图。在图1中显示了为一个直接朝15 GHz雷达行走,脉冲重复频率(PRF)为2.4 kHz的对象采集的每个活动的频谱图示例。有关基于Kinect的微多普勒模拟器及其验证的详细信息,请参见[26]。
在这里插入图片描述

微多普勒特征的鲁棒性

微多普勒信号分类的第一个关键阶段是特征提取。 理想地,希望根据微多普勒数据估算的特征值仅取决于要分类的目标特征,例如:潜在的人体动作。但实际上,信号本身受许多外部因素的影响,其中一些因素在操作员的控制下,例如所用雷达系统的发射信号参数,而另一些则完全取决于操作条件,例如:雷达所处的位置,目标接近的方向以及数据收集的持续时间。

可以从原始I / Q雷达数据或频谱图计算特征。 可以定义四种主要类型的特征:物理特征,基于变换的特征,成分分析和语音特征。物理特征是指从频谱图的测量特性得出的特征,与目标或其运动的物理特征有关。例子包括平均躯干多普勒频率; 总多普勒带宽(BW); 躯干反应频率或步幅; 包络特性;步速;以及从Cadence Velocity Diagram(CVD)中提取的特征,该特征是通过频谱图随时间的快速傅里叶变换(FFT)计算得出的。可从CVD提取的特征包括躯干功率,谐波频率,谐波功率和附属物与躯干的比,它们被定义为谐波功率与躯干功率之比。

除了物理特征(这是提议用于微多普勒分类的最早特征)之外,最近还采用了基于变换的特征和受语音处理启发的特征。常用的基于变换的特征包括FFT和DCT系数,并且通常由频谱图计算,倒谱和双倒谱系数也是如此,而基于语音的特征(如梅尔频率倒谱系数(MFCC)和线性预测编码(LPC)系数)从原始I / Q数据计算得出。长度为 N N N的离散信号 x n x_{n} xn的DCT被定义为:在这里插入图片描述
倒谱 c ( n ) c(n) c(n)被定义为输入信号 x ( n ) x(n) x(n)的DFT对数幅度的逆DFT在这里插入图片描述
任何期望数量的DCT系数 X k X_{k} Xk或倒谱系数 c ( n ) c(n) c(n)可以用作特征。倒谱系数也与MFCC紧密相关,而MFCC是通过根据模拟人类声音感知的梅尔频率滤波器组首先对信号进行滤波来计算的。另一方面,LPC系数基于更通用的原理,即将电流信号表示为过去值的线性组合。
在这里插入图片描述
其中 d ( k ) d(k) d(k)是LPC, p p p是LPC的总数。通过使用多种技术(例如Levinson-Durbin递归)中的任何一种来使误差最小化来计算LPC。

为了最大程度地减少特征总数,成分分析器技术(例如PCA,ICA和奇异值分解)也已应用于微多普勒信号。例如,在PCA中,寻求可以代表整个数据集的最小数量的正交向量。 一旦计算了正交分解,就可以将所得的特征值用作特征。尽管所有这些功能(无论是单独使用还是组合使用)都已用于微多普勒分类,但是每种功能受雷达参数和测试场景的影响都不同。现在以跑步,步行,跳跃和拳击之间的分类为例,依次考虑这些影响。

雷达系统参数的影响

脉冲多普勒雷达系统通常会发射线性频率调制或线性调频信号,这是发射频率,带宽,脉冲持续时间和PRF的函数。这些参数反过来影响雷达的测量能力。 例如,范围分辨率取决于带宽,而多普勒分辨率取决于PRF,并且感应的多普勒频移受发射频率影响。通过计算在五个邻域的kNN分类器上一次仅使用一项功能即可获得的分类性能,从而研究了发射频率和PRF的影响。

使用基于Kinect的微多普勒信号模拟器生成了模拟签名的数据库,用于9个不同的发射频率,8个不同的人和4种不同的活动,纵横比为0°,PRF为2.4 kHz,总共产生288个信号。对于步行和跑步信号,信号的持续时间为24 s,对于跳跃信号为1.5 s,对于拳击信号为3.5 s。随机选择该数据库的60%作为训练集,而其余40%的签名用作测试数据。对于PRF,将生成相似的训练/测试数据库,且所有参数保持相同,不同之处在于发射频率保持恒定在15 GHz,同时使用了八个不同的PRF,从而产生了256个签名的数据库。在这项研究中检查的特征包括:(i)物理特征:平均躯干多普勒频率,上下包络的平均值,躯干反应的带宽,总带宽和包络均值的差(外部带宽); (ii)前三个倒谱系数; (iii)前十个DCT系数; (iv)100个LPC系数。图2a和b显示了每种类型的特征的性能,这些特征是通过共同使用给定类型的所有特征来计算的,以及每种特征单独获得的分类性能,分别针对图2c和2d的物理特征显示。
在这里插入图片描述
虽然10 GHz以上的物理特性和LPC系数或多或少提供了不变的性能,但倒频谱和DCT系数似乎受发射频率的影响很大。 实际上,DCT系数在10至20 GHz之间达到峰值,这表明使用这些功能对于此类X和Ku波段雷达会更可取。 PRF对功能的影响似乎要小得多,只有在PRF低于1.5 kHz时DCT系数才性能会下降。

信噪比的影响

与雷达系统参数不同,不受操作员控制的最重要的环境因素之一就是SNR。 预计性能会随着杂波级别的增加而降低;但是从功能选择的角度来看,选择在嘈杂环境中稳定的功能是确保在各种情况下确保性能的一项实际要求。为了评估SNR的影响,针对九种不同SNR生成了288个模拟签名的数据库。 在每个测试的SNR处生成独立的,分布均匀的复杂高斯噪声,并将其添加到无噪声的模拟接收信号中,并计算频谱图。对于每个特征集,在每个SNR处都重复此过程100次,并对结果取平均值以找到报告的分类结果。

图3显示了当仅使用单个特征时分类性能随SNR的变化。 根据特征类型报告平均分类结果。尽管所有功能均会随噪声水平的提高而表现出预期的性能下降,但物理功能和倒谱系数所经历的总体性能下降要比DCT和LPC系数所经历的整体性能下降要大得多。因此,在高杂波环境中,DCT和LPC系数优于其他可能的特征。
在这里插入图片描述

天线-目标方位角的影响

雷达固有地不仅测量范围,而且还测量目标的径向速度。 因此雷达视线与目标运动方向之间的方位角是影响微多普勒信号的关键因素。当目标直接朝向或远离雷达(0°纵横角)移动时,可以获得最容易区分的特征,从而获得最大的多普勒扩展。随着方位角的增加,雷达看到的径向速度分量减小,从而导致微多普勒信号的总多普勒扩展同样减小。生成的信号的频率似乎越来越“压缩”,并且提取特征的准确性也同样下降。例如,尽管总的多普勒带宽通常是区分跑步和步行的好功能,但是当目标切线向雷达视线切线移动时,总的多普勒范围很小,几乎看不到跑步和步行信号之间的任何差异。

为了评估方位角的影响,针对13个不同的方位角生成了416个模拟信号的数据库。 在图4中给出了根据特征类型的分类性能作为方位角的函数。当方位角增加到90°时,所有特征的性能都会越来越差。但是,DCT系数的下降最少,而倒谱和LPC系数受角度的影响最大。在这里插入图片描述

驻留时间的影响

因为大多数微多普勒信号是周期性振动或旋转的结果,所以观察目标的持续时间对微多普勒特征有重大影响。良好的分类性能通常取决于能够准确地提取有关这些周期性的信息。例如,在人体运动的情况下,躯干,手臂和腿部振动的频率对于区分步行,跑步和更广泛的活动(例如随机运动)非常重要。

为了评估停留时间的影响,针对十个不同的持续时间生成了包含320个模拟信号的数据库。 图5显示了根据停留时间变化的分类结果,是根据每种特征类型共同使用所有特征计算得出的。在这里,即使停留时间很短,DCT系数也会产生一致的结果。 物理特征受驻留时间影响最大,但是随着驻留时间的增加,它们也最有能力区分随机运动和行走以及随机运动和跑步之间的微小差异。 因此,更长的停留时间可实现更好的整体性能.

总之,任何给定功能的功效不仅取决于操作员控制中的系统参数(例如发射频率和PRF),还取决于操作员控制之外的因素,例如SNR,方位角和驻留时间。 但是,功能的有效性还取决于当前的分类问题。 在下一节中,将讨论用于选择最大化分类性能的子集的特征选择方法。在这里插入图片描述

特征选择

选择分类的最佳特征子集有两种主要方法:过滤器方法和包装器方法[27]。 过滤方法通过使用类可分离性的度量(例如相关性,欧氏距离或Battacharya距离,互信息和t检验)来评估特征的相关性。 选择得分较高的功能,而得分较低的功能将被丢弃。过滤器方法的一个重要优点是它们独立于随后使用的分类器。 将特征选择和分类阶段解耦,以便可以将所需的任何分类器应用于由滤波方法选择的子集。 然而,这种去耦的不利之处在于,与分类器的任何交互都将被忽略。另一方面,包装器方法利用特征空间中的蛮力搜索来查找哪种组合产生最大的分类性能。 性能不是使用度量,而是直接使用特定分类器进行计算,因此,如果使用其他分类器,则需要重新计算所选特征子集。 随着搜索空间随要评估的特征数量呈指数增长,包装器的计算强度往往比过滤器方法高得多。因此,通常使用启发式搜索方法。两种常见的搜索策略是顺序前向选择(SFS)和顺序后向消除(SBE)。 SFS选择产生预定目标函数最大值的特征,例如给定分类器的正确分类率:
(i)从空集F(Ø)开始。
(ii)选择下一个特征x,作为与先前选择的特征一起使用时产生最大分类性能的那个。
(iii)将所选特征集更新为Fk + 1 = Fk + x,并增加k。
(iv)重复步骤2,直到选择了所需功能的总数。

SBE算法以类似的方式运行,只是这次所有特征都包含在初始特征列表中,并且根据分类性能在每次迭代中将特征逐一删除。

在这项工作中,使用t检验[28]作为代表性的滤波方法,使用SFS [29]作为代表性的包装器方法,从先前使用的所有微多普勒特征中选择最佳特征子集:十个物理特征 ,十个DCT系数,三个倒谱系数和100个LPC系数。t检验是一种统计方法,用于评估两类平均值之间的差异。 第c类中第i个特征的t统计值可以定义为:在这里插入图片描述
其中 x ˉ i c \bar{x}_{i c} xˉic是第c类中第i个特征的均值,而 x ˉ i \bar{x}_{i} xˉi是所有类中第i个特征的均值. S i S_{i} Si是第i个特征的类内标准差, S 0 S_{0} S0是所有特征的 S i S_{i} Si中值。 该标准偏差可以计算为:在这里插入图片描述
其中N是C类中所有样本的数量, x i j x_ij xij是第j个样本的第i个特征。 常数 M c M_{c} Mc是根据样本数 n c n_{c} nc定义的,在c类中如下:在这里插入图片描述
在图6中将t检验的性能与SFS的性能进行了比较,该图显示了kNN = 5的分类器,当数量变化时,可以实现四个类别(步行,奔跑,拳击和跳跃)的正确分类率 两种方法都选择了特征数。该结果清楚地表明了特征选择的好处-当使用一小部分精心选择的特征子集时,两种算法都能发挥出最佳性能。例如,当使用40个功能时,t检验滤波器实际上会产生峰值性能,而只有10个功能可以提供接近峰值的性能。 SFS包装器方法仅具有八个功能就可产生最佳性能。 此外,无论特征集大小如何,都可以观察到SFS包装器的性能优于t检验过滤器方法,十个特征的分类性能相差约5%。在这里插入图片描述
从表1和表2中可以看出特征选择对分类性能的影响,特别是在次优操作条件下。考虑一种情况,其中具有2.4 kHz PRF的15 GHz雷达扫描SNR为20 dB且方位角为60°的目标仅1.5s。使用所有功能时,总体分类性能达到77.8%; 但是,仅选择了10个功能,该比率就提高到了86.6%,大约提高了9%。在这里插入图片描述

自适应特征选择

如第3节所示,分类性能不仅高度取决于操作员控制下的系统参数,而且还取决于场景相关的条件,例如目标被扫描的持续时间以及相对于雷达视线的方位角。通过特征选择,可以在给定情况下最大化雷达处理器的分类性能。但是在某些情况下,目标轨迹可能具有足够的动态性,以至于根据训练数据根据某个视线进行的一组特征预选实际上只会优化收集到的数据中很小一部分的性能。例如,请考虑识别在室内行走的人的问题,其中许多路径是曲线的。 更具体地说,假设如图7a所示,具有2.4 kHz PRF的X波段(15 GHz)雷达配备了60°波束宽度的天线,观察到一个人沿圆周行走。尽管波束宽度为60°,但我们假设目标从旁瓣返回,即使在接近90°时,雷达也能接收来自目标的反射。从雷达数据中提取的频谱图如图7b所示。现在假设从所有可能的123个特征中选择10个特征的主题,以使用kNN-5分类器对数据进行分类。图8显示了t检验滤波器,SFS包装器和PCA算法的性能与驻留时间的关系。对于较短的停留时间,在数据收集过程中引起的角度变化较小,因此可以获得更高的分类性能。但是,随着停留时间的增加和更多圆的遍历,角度变化是如此之大,以至于尽管训练集包含以多个角度收集的数据,但分类器无法正确解释这一变化,并且误分类率急剧增加。实际上,在整个3 s的停留时间内,所有方法的性能下降到大约5%。 因此,对于高度可变的动态目标轨迹,即使进行特征选择,常规处理也无法获得理想的结果。在这里插入图片描述在这里插入图片描述

或者,这项工作提出了针对这种情况的自适应特征选择的实现。 与其将整个收集的数据作为单个信号处理,不如将其作为多个较短的时间段进行处理。如第3节所示,通常缩短驻留时间会降低性能。 为了增加时间采样,提取段使得它们相对于彼此具有一定量的重叠。这种重叠的分割过程如图9所示。对于四分之一圆的轨迹处理,其片段持续时间为1 s,重叠时间为0.5 s,总共产生15个独立分类的片段。在这里插入图片描述
首先,通过绘制分类性能随线性时间在停留时间上的变化来选择段持续时间,如图10a所示。 选择使用十个特征产生最好性能在这种情况下的持续时间为0.7 s。接下来,给出该选择,针对圆形轨迹计算针对不同重叠持续时间的分类性能的变化,如图10b所示。同样选择产生最大性能的重叠。 一旦对数据进行了分割,就使用针对该特定段的方位角最佳的特征集对每个段进行独立分类,从而补偿所遍历路径的变化。 计算分类结果,以计算整个轨迹的结果。 图11给出了该方法的流程图。在这里插入图片描述
在这里插入图片描述
自适应特征选择的好处在图12所示的结果中非常明显,其中比较了将不同特征选择算法自适应地应用于数据段持续时间为0.7 s和重叠时间为0.3 s的表现。将被正确识别为行走的对象的速率绘制为SNR的函数。 如果根本没有应用任何特征选择,则在几乎整洁的环境中(SNR = 35 dB),正确确定沿半圆轨迹的行走速度为70%。低于25 dB,永远不会成功识别步行。 另一方面,当自适应地使用SFS包装器方法来选择十个功能时,该速率在35 dB时上升到刚好超过90%,在25 dB时稍微下降到大约85%,跌到15 dB以下没有正确的分类。正如先前对特征选择算法的讨论和分析比较所期望的那样,包装器的性能优于t检验过滤器方法,而这两种特征选择算法均超过了PCA降维所产生的结果。在这里插入图片描述

结论

在这项工作中,显示了使用特征选择来优化各种系统参数(例如发射频率和PRI)以及操作条件(例如SNR,驻留时间和方位角)下的性能所需的必要性和性能增益,多种特征选择方法(过滤器和包装器)。将特征选择可获得的性能提升与降维获得的性能提升进行比较。评估了微多普勒特征的鲁棒性,并提出了自适应特征选择,以提高高度可变目标轨迹的分类性能,同时还使所使用特征的总数最小化。结果表明,与在处理中不包括任何特征选择阶段的结果相比,使用自适应特征选择可以将分类性能在35 dB时提高30%,在25 dB时提高85%。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值