博主深度学习在读,记录一下自己的深度学习+图像处理的学习历程,同时提供给有兴趣学习的小伙伴们一个入门向教程,欢迎大家相互讨论,共同进步。
首先,介绍一下自己使用的虚拟机版本以及深度学习框架,在安装过程中遇到的问题以及注意事项会在这里一一介绍。
在这里,我选择的是系统是Ubuntu版本的Linux,并在Vmware上进行了系统的安装。
深度学习框架使用的是Tensorflow2.0版本,注意,在一些教程当中使用的是Tensorflow1.0版本,这其中有一些命令是不能互相使用的,大家根据自己的安排选用不同的版本即可。
入门学习则是使用的Jupyter。
下面介绍一下自己在配置开发环境中遇到的问题
在配置开发环境时,大家总会遇到各式各样的问题,下面就我在配置时遇到的问题以及参考的解决方法做一个汇总,跟着一步一步来,一定是没有问题的!
首先,由于Tensorflow支持Python语言的开发,所以在这里,我们坚决使用Python来进行对Tensorflow的学习。既然决定了使用Python学习,那么安装Anaconda则是一个必要的步骤,
Anaconda的介绍以及优点
Anaconda的实质是一个包管理器,大家可以理解为一个工具,Anaconda的安装自带一个Python解释器以及几种常用的模块。Anaconda的核心功能在于环境管理,在我们进行开发的过程中,难免会使用一些模块,但是模块的版本与Python解释器的版本可能会不兼容,而Anaconda则完美解决了这个问题,在Anaconda下载所需要的模块,会与我们解释器的版本相对应,这样就解决了在开发过程中可能遇到版本不兼容的问题。Anaconda可以创建虚拟环境,虚拟环境可以拥有自己的Python解释器以及一些其他的包模块,这非常有利于我们在实验不同项目时环境的切换。Anaconda的虚拟环境保存在安装路径的envs文件夹下,相关Python解释器路径和安装的模块都存放在此路径下。基于此,我们便可以在不同的虚拟环境中配置不同的Python解释器,包括Python2或Python3。
Anaconda的安装
博主的Anaconda的安装参考了(6条消息) Linux系统下安装TensorFlow(CPU或者GPU版)_love666666shen的博客-CSDN博客_linux安装tensorflow
博主的文章,首先是打开Linux终端,在终端输入命令安装即可。
在安装过程中,我并没有将Anaconda的安装路径加入到环境变量中(在自动安装过程中,我是没有遇到让我输入y/n这个选项,而是直接默认了n选项),所以在这里我参考了(6条消息) Ubuntu安装TensorFlow详细过程_钟良堂的博客-CSDN博客_ubuntu安装tensorflow
博主的文章,配置了后续的环境变量。
至此,Anaconda的安装算是安装成功了,大家跟着步骤一步一步来即可,在我安装中没有遇到的问题,这篇文章没有涉及,大家在CSDN或者B站上找找,总是有解决办法的。
Tensorflow的使用
博主在安装Tensorflow时,使用pip安装很慢,所以在这里我推荐使用conda进行安装。
我们知道,tensorflow只是一个框架,而不是一个软件,所以,在使用tensorflow框架前,我们要先建立一个开发环境,在这里,我参考了 深度学习 | Anaconda安装Tensorflow - 知乎 (zhihu.com)
博主的文章,并且,我推荐大家使用
conda install tensorflow
命令进行安装。
下面是一些在Anaconda中的使用命令,包括创建虚拟环境,进入,查看,退出虚拟环境等等的一些命令。(6条消息) anaconda进入虚拟环境_qq斯国一的博客-CSDN博客_anaconda进入虚拟环境
Jupyter的安装
Jupyter 是一个非常好用的 Python 语言编程工具。或者说是一个 Python 编程语言、以及更多其他编程语言的,交互式集成开发环境。用它来进行深度学习的入门我觉得是十分合适的。
在安装Anaconda时,已经进行了Jupyter的安装,但是,要在Tensorflow中使用Jupyter还需要在虚拟环境中安装ipython和jupyter,在这里,我参考了(6条消息) 【题目】在jupyter中使用Tensorflow_C小C的博客-CSDN博客_jupyter tensorflow
这篇帖子,注意,这里一定是在虚拟环境中进行Ipython和Jupyter的安装。一个工程对应一个环境,一个环境对应一个Jupyter。很好理解。
下面是一些Jupyter的入门方法,(6条消息) jupyter notebook快速入门及使用详解_小虫兄的博客-CSDN博客_jupyter notebook怎么用
至此,Tensorflow的全部配置已经配置好了,接下来就是进行系统的深度学习的学习了。
相互吹捧,共同进步。