大数据面试题——Spark数据倾斜调优(五)

1、数据倾斜

    数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈。

    数据倾斜俩大直接致命后果。

        1、数据倾斜直接会导致一种情况:Out Of Memory。       

        2、运行速度慢 。

    主要是发生在Shuffle阶段。同样Key的数据条数太多了。导致了某个key(下图中的80亿条)所在的Task数据量太大了。远远超过其他Task所处理的数据量。

        

    一个经验结论是:一般情况下,OOM的原因都是数据倾斜

 

2、如何定位数据倾斜

    数据倾斜一般会发生在shuffle过程中。很大程度上是你使用了可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。

原因:  查看任务-》查看Stage-》查看代码

    某个task执行特别慢的情况

    某个task莫名其妙内存溢出的情况

    查看导致数据倾斜的key的数据分布情况

    

    也可从以下几种情况考虑:

    1、是不是有OOM情况出现,一般是少数内存溢出的问题

    2、是不是应用运行时间差异很大,总体时间很长

    3、需要了解你所处理的数据Key的分布情况,如果有些Key有大量的条数,那么就要小心数据倾斜的问题

    4、一般需要通过Spark Web UI和其他一些监控方式出现的异常来综合判断

    5、看看代码里面是否有一些导致Shuffle的算子出现

 

3、数据倾斜的几种典型情况

    3.1 数据源中的数据分布不均匀,Spark需要频繁交互

    3.2 数据集中的不同Key由于分区方式,导致数据倾斜

    3.3 JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要

    3.4 聚合操作中,数据集中的数据分布不均匀(主要

    3.5 JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀

    3.6 JOIN操作中,两个数据集都比较大,有很多Key的数据分布不均匀

    3.7 数据集中少数几个key数据量很大,不重要,其他数据均匀

 

注意:

    1、需要处理的数据倾斜问题就是Shuffle后数据的分布是否均匀问题

    2、只要保证最后的结果是正确的,可以采用任何方式来处理数据倾斜,只要保证在处理过程中不发生数据倾斜就可以

 

4、数据倾斜的处理方法

4.1 数据源中的数据分布不均匀,Spark需要频繁交互

    解决方案1:避免数据源的数据倾斜

        实现原理:通过在Hive中对倾斜的数据进行预处理,以及在进行kafka数据分发时尽量进行平均分配。这种方案从根源上解决了数据倾斜,彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。

        方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。 

        方案缺点:治标不治本,Hive或者Kafka中还是会发生数据倾斜。       

        适用情况:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。

    总结:前台的Java系统和Spark有很频繁的交互,这个时候如果Spark能够在最短的时间内处理数据,往往会给前端有非常好的体验。这个时候可以将数据倾斜的问题抛给数据源端,在数据源端进行数据倾斜的处理。但是这种方案没有真正的处理数据倾斜问题

 

4.2 数据集中的不同Key由于分区方式,导致数据倾斜

    解决方案一:调整并行度

        实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。

        方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。 

        方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。       

        实践经验:该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,都无法处理。

        

    总结:调整并行度:适合于有大量key由于分区算法或者分区数的问题,将key进行了不均匀分区,可以通过调大或者调小分区数来试试是否有效

 

解决方案2:

缓解数据倾斜(自定义Partitioner)

    适用场景:大量不同的Key被分配到了相同的Task造成该Task数据量过大。 

    解决方案: 使用自定义的Partitioner实现类代替默认的HashPartitioner,尽量将所有不同的Key均匀分配到不同的Task中。 

    优势: 不影响原有的并行度设计。如果改变并行度,后续Stage的并行度也会默认改变,可能会影响后续Stage。 

    劣势: 适用场景有限,只能将不同Key分散开,对于同一Key对应数据集非常大的场景不适用。效果与调整并行度类似,只能缓解数据倾斜而不能完全消除数据倾斜。而且需要根据数据特点自定义专用的Partitioner,不够灵活。

 

4.3 JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要

解决方案:Reduce side Join转变为Map side Join

    适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M),比较适用此方案。

    实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。 

    优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。 

    缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。

 

4.4 聚合操作中,数据集中的数据分布不均匀(主要

解决方案:两阶段聚合(局部聚合+全局聚合)

    适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案

    实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。 

    优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。       

    缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案

将相同key的数据分拆处理

 

4.5 JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀

解决方案:为倾斜key增加随机前/后缀

    适用场景:两张表都比较大,无法使用Map侧Join。其中一个RDD有少数几个Key的数据量过大,另外一个RDD的Key分布较为均匀。

    解决方案:将有数据倾斜的RDD中倾斜Key对应的数据集单独抽取出来加上随机前缀,另外一个RDD每条数据分别与随机前缀结合形成新的RDD(笛卡尔积,相当于将其数据增到到原来的N倍,N即为随机前缀的总个数),然后将二者Join后去掉前缀。然后将不包含倾斜Key的剩余数据进行Join。最后将两次Join的结果集通过union合并,即可得到全部Join结果。 

    优势:相对于Map侧Join,更能适应大数据集的Join。如果资源充足,倾斜部分数据集与非倾斜部分数据集可并行进行,效率提升明显。且只针对倾斜部分的数据做数据扩展,增加的资源消耗有限。 

    劣势:如果倾斜Key非常多,则另一侧数据膨胀非常大,此方案不适用。而且此时对倾斜Key与非倾斜Key分开处理,需要扫描数据集两遍,增加了开销。

注意:具有倾斜Key的RDD数据集中,key的数量比较少

        

 

4.6 JOIN操作中,两个数据集都比较大,有很多Key的数据分布不均匀

解决方案:随机前缀和扩容RDD进行join

    适用场景:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义。

    实现思路:将该RDD的每条数据都打上一个n以内的随机前缀。同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。最后将两个处理后的RDD进行join即可。和上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。

    优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。 

    缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。 

    实践经验:曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。

注意:将倾斜Key添加1-N的随机前缀,并将被Join的数据集相应的扩大N倍(需要将1-N数字添加到每一条数据上作为前缀)

 

4.7  数据集中少数几个key数据量很大,不重要,其他数据均匀

解决方案:过滤少数倾斜Key

    适用场景:如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

    优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。 

    缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。       

    实践经验:在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。

 

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 大数据面试题——spark数据倾斜调优) 在Spark数据倾斜是一个常见的问题,它会导致任务执行时间过长,甚至导致任务失败。因此,我们需要对数据倾斜进行调优。 以下是一些调优方法: 1. 均匀分布数据 如果数据倾斜是由于数据分布均匀导致的,可以尝试使用随机数将数据均匀分布到不同的分区。可以使用repartition或coalesce方法来实现。 2. 使用聚合函数 如果数据倾斜是由于某些键的值过大导致的,可以尝试使用聚合函数,如reduceByKey或aggregateByKey,将键值对合并为一个值。这样可以减少数据传输量,从而减少数据倾斜。 3. 使用随机前缀 如果数据倾斜是由于某些键的值过大导致的,可以尝试使用随机前缀来将键值对分散到不同的分区。可以使用map方法来实现。 4. 使用自定义分区器 如果数据倾斜是由于默认的哈希分区器导致的,可以尝试使用自定义分区器来将数据均匀分布到不同的分区。可以实现Partitioner接口来自定义分区器。 5. 使用广播变量 如果数据倾斜是由于某些变量在多个任务重复计算导致的,可以尝试使用广播变量来共享变量。可以使用broadcast方法来实现。 6. 使用缓存 如果数据倾斜是由于某些数据在多个任务重复使用导致的,可以尝试使用缓存来避免重复计算。可以使用cache或persist方法来实现。 以上是一些常见的调优方法,但具体的调优方法需要根据具体的情况来选择。 ### 回答2: 在Spark任务数据倾斜可能会导致某些任务的执行时间远远超过其他任务,从而导致整个Spark应用程序的执行时间延长。为了解决这个问题,可以采取以下优化措施: 1.数据预处理:可以通过分析数据的相关性以及倾斜数据的分布情况来提前对数据进行处理和转换,以便尽可能地把数据分散到多个partition。例如,可以采用哈希等方式,将数据平均地分配到多个分区去。 2.增加分区数量:如果数据存在明显的倾斜态势,那么可以通过增加partition的数量来缓解数据倾斜的影响。可以使用repartition或者coalesce算子来增加分区数量。 3.采用随机算法:随机算法可以有效地减少数据倾斜的影响。例如,在join操作,可以采用随机抽样的方式来选择少数表的关联键,以达到数据均衡的目的。 4.使用自定义累加器:如果数据倾斜只存在于某些关键数据上,可以采用自定义累加器的方式减少数据倾斜的影响。例如,在计算word count时,可以使用Accumulator来统计单词出现的次数,以达到数据均衡的目的。 5.使用Broadcast变量:如果数据倾斜存在于join的话,可以使用Broadcast变量将较小的表广播到每个节点,以减少网络传输的消耗。 综上所述,解决Spark数据倾斜问题需要综合考虑数据处理方式、partition数量、算法选择等方面,根据实际情况来设计和优化Spark应用程序,以达到优化性能、提升运行效率的目的。 ### 回答3: Spark数据倾斜是一个常见的问题,它发生的原因可能是数据分布均匀或者数据特征相似性较高等。如果不加以处理,数据倾斜会导致运行时间变长,资源浪费,甚至导致任务失败等一系列问题。因此,调优是十分必要的。 一般情况下,Spark数据倾斜调优的方法主要分为以下几种: 1. 手动调节shuffle分区的数量 数据倾斜时,可以通过调整shuffle的分区数量来缓解压力。当数据分布较为均匀时,增加分区数量可以提高并行度,更好地利用资源,减少运行时间。但是原本数据分布均匀的情况下,增加分区数量只能加重分区内的数据倾斜问题。 2. 增加随机前缀或者后缀 随机前缀或者后缀是一种常用的解决Spark数据倾斜的方法。它通过对相同Key的Value加上随机数的前缀或者后缀,然后再进行处理,将原本的数据压平,以达到均匀分布的效果。 3. 使用Spark SQL的聚合函数 Spark SQL的聚合函数可以更好地解决数据倾斜的问题。如果遇到有大量重复Key的情况,可以使用Spark SQL的ReduceByKey或者GroupByKey进行聚合,其实现过程会自动解决数据倾斜的问题。 4. 采用第三方工具 当数据倾斜问题较严重时,可以采用第三方工具,如Spark的Tungsten、HyperLogLog等。这些工具可以对数据进行均衡分布,优化任务,并提高运行效率。 总结起来,在Spark数据倾斜调优,我们可以通过手动调整shuffle分区数量、增加随机前缀或后缀、使用Spark SQL聚合函数、采用第三方工具等方法来解决问题。但是,具体方法要根据不同场景灵活运用,选择合适的解决方案。同时,对于Spark应用程序的开发和调试,我们也应该加强对Spark内核的理解,减少数据倾斜问题的出现,以提高应用程序的稳定性和运行效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值