初等数论--整除--整数表示:算数分解定理/素因数分解式/进制表示
博主是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列: 初等数论,方便检索。
对 于 任 意 整 数 , 以 下 两 种 形 式 存 在 且 唯 一 。 对于任意整数,以下两种形式存在且唯一。 对于任意整数,以下两种形式存在且唯一。
素 因 数 分 解 式 : n = p 1 e 1 p 2 e 2 … p n e n , p 1 、 p 2 … p n 是 不 同 的 素 数 , p 1 < p 2 < … < p n 。 素因数分解式:n=p_{1}^{e_{1}}p_{2}^{e_{2}}…p_{n}^{e_{n}},p_{1}、p_{2}…p_{n}是不同的素数,p_{1}<p_{2}<…<p_{n}。 素因数分解式:n=p1e1p