域论--概览
博主正在学习域,参考材料为
- field theory(Second Edition)–Steven Roman
- 代数学引论(第三版)–聂灵沼,丁石孙
- 近世代数(第二版)–韩士安,林磊
内容框架为“应用代数课程–丁宁老师”所学知识,做一些笔记供自己回忆,如有错误请指正。整理成一个系列域论,方便检索。
环,域
整环 Integral Domain/ID
- 无零因子
- 交换幺环
素元和不可约元
定义
- 素元:整环 D D D中非零非单位, ∀ a , b ∈ D \forall a,b\in D ∀a,b∈D,如果 p ∣ a b → p ∣ a p\mid ab\rightarrow p\mid a p∣ab→p∣a或 p ∣ b p\mid b p∣b。
- 不可约元:整环中非零非单位,无真因子
性质
- 在ID中,素元是不可约元
- 在UFD中,不可约元是素元
素理想和极大理想
定义
- 素理想: R R R是交换环, P P P是 R R R的真理想。 ∀ a , b ∈ R \forall a,b\in R ∀a,b∈R,如果 a b ∈ P ab\in P ab∈P, → a ∈ P \rightarrow a\in P →a∈P或 b ∈ P b\in P b∈P。
- 极大理想: R R R是交换环, M M M是 R R R的真理想。对 R R R的任一包含 M M M的理想 N N N,必有 N = M N=M N=M或 N = R N=R N=R。
性质
- 在交换幺环 R R R中, I I I是 R R R的理想,则 I I I是 R R R的素理想 ⇔ R / I \Leftrightarrow R/I ⇔R/I是整环。
- 在交换幺环 R R R中, I I I是 R R R的理想,则 I I I是 R R R的极大理想 ⇔ R / I \Leftrightarrow R/I ⇔R/I是域。
- 素元生成的非零理想是素理想
- 不可约元在PID中生成的理想为极大理想
ED → \rightarrow →PID → \rightarrow →UFD
定义
- 欧几里得整环 ED
- 主理想整环 PID
- 唯一分解整环 UFD
性质
- ED一定是PID,PID一定是UFD
- 整环上多项式环是整环
- UFD上多项式环是UFD
- PID上多项式环不一定是PID
- 域 F F F上多项式环 F [ x ] F[x] F[x]是ED
多项式
定义:
- 本原多项式: c ( f ) = 1 c(f)=1 c(f)=1
- 极小多项式:对于 α \alpha α,唯一的首一不可约多项式 p ( x ) ∈ F [ x ] p(x)\in F[x] p(x)∈F[x]使得 p ( α ) = 0 p(\alpha)=0 p(α)=0
- 在域 F F F上分裂:多项式的根都属于域 F F F
- 重根: f ( x ) = ( x − α ) e , e > 1 , α ∈ K f(x)=(x-\alpha)^e,e>1,\alpha\in K f(x)=(x−α)e,e>1,α∈K,则 α \alpha α为 f ( x ) f(x) f(x)在 K K K内的 e e e重根, e e e为重数。
- 共轭: α \alpha α与 β \beta β共轭, α \alpha α与 β \beta β的极小多项式相同
性质:
- 高斯引理: c ( f g ) = c ( f ) c ( g ) c(fg)=c(f)c(g) c(fg)=c(f)c(g)
- f ( α ) = 0 ⇔ p ( x ) ∣ f ( x ) f(\alpha)=0\Leftrightarrow p(x)\mid f(x) f(α)=0⇔p(x)∣f(x), p ( x ) p(x) p(x)是 I α I_{\alpha} Iα的生成元, I α = < p ( x ) > I_{\alpha}=<p(x)> Iα=<p(x)>
- 判断多项式不可约 Eisenstein’s Criterion:。在整环 R R R上, p ( x ) = a 0 + a 1 x + … … + a n x n ∈ R [ x ] p(x)=a_0+a_1x+……+a_nx^n\in R[x] p(x)=a0+a1x+……+anxn∈R[x],如果存在素数 p ∈ R p\in R p∈R,满足 p ∣ a i ( 0 ≤ i ≤ n − 1 ) p\mid a_i(0\le i\le n-1) p∣ai(0≤i≤n−1), p ∤ a n p \nmid a_n p∤an, p 2 ∤ a 0 p^2\nmid a_0 p2∤a0,则 p ( x ) p(x) p(x)不可约
域的扩张
有限生成扩张
E = F ( S ) E=F(S) E=F(S), S S S是一个有限集合
- F ( S ∪ T ) = F ( S ) ( T ) F(S\cup T)=F(S)(T) F(S∪T)=F(S)(T)
代数扩张
E / F E/F E/F, ∀ α ∈ E \forall \alpha\in E ∀α∈E, α \alpha α在 F F F上是代数的
单代数扩张
E = F ( α ) , α ∈ E E=F(\alpha),\alpha\in E E=F(α),α∈E, α \alpha α在 F F F上是代数的
- F ( α ) F(\alpha) F(α)是代数的
- F ( α ) F(\alpha) F(α)是有限的
- F ( α ) = f ( α ) ∣ f ( x ) ∈ F [ x ] , d e g ( f ) < d e g ( p α ) F(\alpha)={f(\alpha)|f(x)\in F[x],deg(f)<deg(p_\alpha)} F(α)=f(α)∣f(x)∈F[x],deg(f)<deg(pα)
- F ( α ) ≅ F [ x ] p α ( x ) F(\alpha)\cong \frac{F[x]}{p_\alpha(x)} F(α)≅pα(x)F[x]
- [ F ( α ) : F ] = d e g ( p α ) [F(\alpha):F]=deg(p_\alpha) [F(α):F]=deg(pα)
有限扩张
[ E : F ] [E:F] [E:F]是有限的
- E / F E/F E/F是有限扩张 ⇔ E / F \Leftrightarrow E/F ⇔E/F是有限生成的代数扩张, E = F ( α 1 , … … α n ) E=F(\alpha_1,……\alpha_n) E=F(α1,……αn)
- E / F E/F E/F是有限扩张 → E / F \rightarrow E/F →E/F是代数扩张
- E / F E/F E/F是代数扩张,不能推出 E / F E/F E/F是有限扩张,反例 C / R \mathbb{C}/\mathbb{R} C/R
- 有限扩张是单扩张(有限域的乘法群是循环群)
代数闭的,代数闭包
定义
- 代数闭的:域 E E E中的任何非常系数多项式在 E E E中分裂
- 代数闭包 F ‾ \overline{F} F: A / F A/F A/F是代数的, A A A是代数闭的,在代数闭域 E E E中所有在 F F F上代数的元素 α 1 … … α n \alpha_1……\alpha_n α1……αn, A = F ( α 1 … … α n ) A=F(\alpha_1……\alpha_n) A=F(α1……αn)
性质
- 对任意域 F F F,存在扩域 E / F E/F E/F是代数闭的(代数闭域存在不唯一)
- 在 F F F的代数闭域 E E