域论--概览

这篇博客探讨了域论的基本概念,包括整环、素元和不可约元、素理想和极大理想。深入讨论了多项式环、域的扩张,特别是有限生成扩张、代数扩张和单代数扩张,以及分裂域、正规扩张和可分扩张的性质。还涵盖了有限域的结构、不可约多项式和有限域算术。此外,提到了分圆域和代数编码理论,如重复码、单奇偶校验码、汉明码和循环码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博主正在学习,参考材料为

  • field theory(Second Edition)–Steven Roman
  • 代数学引论(第三版)–聂灵沼,丁石孙
  • 近世代数(第二版)–韩士安,林磊

内容框架为“应用代数课程–丁宁老师”所学知识,做一些笔记供自己回忆,如有错误请指正。整理成一个系列域论,方便检索。

环,域

整环 Integral Domain/ID

  • 无零因子
  • 交换幺环

素元和不可约元

定义

  • 素元:整环 D D D中非零非单位, ∀ a , b ∈ D \forall a,b\in D a,bD,如果 p ∣ a b → p ∣ a p\mid ab\rightarrow p\mid a pabpa p ∣ b p\mid b pb
  • 不可约元:整环中非零非单位,无真因子

性质

  • 在ID中,素元是不可约元
  • 在UFD中,不可约元是素元

素理想和极大理想

定义

  • 素理想: R R R是交换环, P P P R R R的真理想。 ∀ a , b ∈ R \forall a,b\in R a,bR,如果 a b ∈ P ab\in P abP → a ∈ P \rightarrow a\in P aP b ∈ P b\in P bP
  • 极大理想: R R R是交换环, M M M R R R的真理想。对 R R R的任一包含 M M M的理想 N N N,必有 N = M N=M N=M N = R N=R N=R

性质

  • 在交换幺环 R R R中, I I I R R R的理想,则 I I I R R R的素理想 ⇔ R / I \Leftrightarrow R/I R/I是整环。
  • 在交换幺环 R R R中, I I I R R R的理想,则 I I I R R R的极大理想 ⇔ R / I \Leftrightarrow R/I R/I是域。
  • 素元生成的非零理想是素理想
  • 不可约元在PID中生成的理想为极大理想

ED → \rightarrow PID → \rightarrow UFD

定义

  • 欧几里得整环 ED
  • 主理想整环 PID
  • 唯一分解整环 UFD

性质

  • ED一定是PID,PID一定是UFD
  • 整环上多项式环是整环
  • UFD上多项式环是UFD
  • PID上多项式环不一定是PID
  • F F F上多项式环 F [ x ] F[x] F[x]是ED

多项式

定义:

  • 本原多项式: c ( f ) = 1 c(f)=1 c(f)=1
  • 极小多项式:对于 α \alpha α,唯一的首一不可约多项式 p ( x ) ∈ F [ x ] p(x)\in F[x] p(x)F[x]使得 p ( α ) = 0 p(\alpha)=0 p(α)=0
  • 在域 F F F上分裂:多项式的根都属于域 F F F
  • 重根: f ( x ) = ( x − α ) e , e > 1 , α ∈ K f(x)=(x-\alpha)^e,e>1,\alpha\in K f(x)=(xα)e,e>1,αK,则 α \alpha α f ( x ) f(x) f(x) K K K内的 e e e重根, e e e为重数。
  • 共轭: α \alpha α β \beta β共轭, α \alpha α β \beta β的极小多项式相同

性质:

  • 高斯引理: c ( f g ) = c ( f ) c ( g ) c(fg)=c(f)c(g) c(fg)=c(f)c(g)
  • f ( α ) = 0 ⇔ p ( x ) ∣ f ( x ) f(\alpha)=0\Leftrightarrow p(x)\mid f(x) f(α)=0p(x)f(x) p ( x ) p(x) p(x) I α I_{\alpha} Iα的生成元, I α = < p ( x ) > I_{\alpha}=<p(x)> Iα=<p(x)>
  • 判断多项式不可约 Eisenstein’s Criterion:。在整环 R R R上, p ( x ) = a 0 + a 1 x + … … + a n x n ∈ R [ x ] p(x)=a_0+a_1x+……+a_nx^n\in R[x] p(x)=a0+a1x++anxnR[x],如果存在素数 p ∈ R p\in R pR,满足 p ∣ a i ( 0 ≤ i ≤ n − 1 ) p\mid a_i(0\le i\le n-1) pai(0in1) p ∤ a n p \nmid a_n pan p 2 ∤ a 0 p^2\nmid a_0 p2a0,则 p ( x ) p(x) p(x)不可约

域的扩张

有限生成扩张

E = F ( S ) E=F(S) E=F(S) S S S是一个有限集合

  • F ( S ∪ T ) = F ( S ) ( T ) F(S\cup T)=F(S)(T) F(ST)=F(S)(T)

代数扩张

E / F E/F E/F ∀ α ∈ E \forall \alpha\in E αE α \alpha α F F F上是代数的

单代数扩张

E = F ( α ) , α ∈ E E=F(\alpha),\alpha\in E E=F(α),αE α \alpha α F F F上是代数的

  • F ( α ) F(\alpha) F(α)是代数的
  • F ( α ) F(\alpha) F(α)是有限的
  • F ( α ) = f ( α ) ∣ f ( x ) ∈ F [ x ] , d e g ( f ) < d e g ( p α ) F(\alpha)={f(\alpha)|f(x)\in F[x],deg(f)<deg(p_\alpha)} F(α)=f(α)f(x)F[x],deg(f)<deg(pα)
  • F ( α ) ≅ F [ x ] p α ( x ) F(\alpha)\cong \frac{F[x]}{p_\alpha(x)} F(α)pα(x)F[x]
  • [ F ( α ) : F ] = d e g ( p α ) [F(\alpha):F]=deg(p_\alpha) [F(α):F]=deg(pα)

有限扩张

[ E : F ] [E:F] [E:F]是有限的

  • E / F E/F E/F是有限扩张 ⇔ E / F \Leftrightarrow E/F E/F是有限生成的代数扩张, E = F ( α 1 , … … α n ) E=F(\alpha_1,……\alpha_n) E=F(α1,αn)
    • E / F E/F E/F是有限扩张 → E / F \rightarrow E/F E/F是代数扩张
    • E / F E/F E/F是代数扩张,不能推出 E / F E/F E/F是有限扩张,反例 C / R \mathbb{C}/\mathbb{R} C/R
  • 有限扩张是单扩张(有限域的乘法群是循环群)

代数闭的,代数闭包

定义

  • 代数闭的:域 E E E中的任何非常系数多项式在 E E E中分裂
  • 代数闭包 F ‾ \overline{F} F A / F A/F A/F是代数的, A A A是代数闭的,在代数闭域 E E E中所有在 F F F上代数的元素 α 1 … … α n \alpha_1……\alpha_n α1αn A = F ( α 1 … … α n ) A=F(\alpha_1……\alpha_n) A=F(α1αn)

性质

  • 对任意域 F F F,存在扩域 E / F E/F E/F是代数闭的(代数闭域存在不唯一
  • F F F的代数闭域 E E
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值