pandas DataFrame 交集并集补集

1.场景,对于colums都相同的dataframe做过滤的时候
例如:

df1 = DataFrame([['a', 10, '男'], 
                 ['b', 11, '男'], 
                 ['c', 11, '女'], 
                 ['a', 10, '女'],
                 ['c', 11, '男']], 
                columns=['name', 'age', 'sex'])

df2 = DataFrame([['a', 10, '男'], 
                 ['b', 11, '女']],
                columns=['name', 'age', 'sex'])

取交集:

print(pd.merge(df1,df2,on=['name', 'age', 'sex']))

取并集:

print(pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))

取差集(从df1中过滤df1在df2中存在的行):

df1 = df1.append(df2)
df1 = df1.append(df2)
df1 = df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False)
print(df1)

代码:

# -*- coding:utf-8 -*-
import pandas as pd
from pandas import *

df1 = DataFrame([['a', 10, '男'],
                 ['b', 11, '男'],
                 ['c', 11, '女'],
                 ['a', 10, '女'],
                 ['c', 11, '男']],
                columns=['name', 'age', 'sex'])
print("df1:\n%s\n\n" % df1)
df2 = DataFrame([['a', 10, '男'],
                 ['b', 11, '女']],
                columns=['name', 'age', 'sex'])
print("df2:\n%s\n\n" % df2)

取交集

print("交集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex']))

取并集

print("并集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))

从df1中过滤df1在df2中存在的行,也就是取补集

df1 = df1.append(df2)
df1 = df1.append(df2)
print("补集(从df1中过滤df1在df2中存在的行):\n%s\n\n" % df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值