1.创建虚拟环境
方法一:
conda create -n tf_2g python=3.7(速度可能有点慢,需要多试几次),选择yes
进入该环境:conda activate tf_2g
方法二:
使用virtualenv创建新的虚拟环境。
优点:在pycharm中创建环境,可以继承全局的安装包。这样,安装模块的时候,就不用总是切换到该环境下,再安装一遍。而且,可以随意使用conda或pip安装的包,不用担心在该环境中,提示找不到包。
缺点:需要手动下载cuda和cudnn,配置环境,太麻烦了。这里只是示意在pycharm中如何添加。
首先,在该目录下新建tf_2g文件夹。例如,我的目录是E:\soft\miniconda3\envs
然后,在pycharm中添加python解释器,创建新的环境。记得勾选“inherit global packages”:


虽然这里没有显示任何安装包,但是,我们在命令行测试:

本文介绍了在Anaconda环境下创建虚拟环境并安装TensorFlow-GPU 2.1.0的详细步骤,包括创建虚拟环境的方法、安装CUDA和cuDNN、验证安装及应用示例。特别强调了需要安装cudatoolkit 10.1版本以确保GPU支持。
最低0.47元/天 解锁文章
393

被折叠的 条评论
为什么被折叠?



