等式约束条件下
Problem Statement
- 在已知信道的条件下,通过调整基站分配给每个用户的功率,使得总信道容量达到最大
- 问题形式如下: minimize ∑ i = 1 m l o g ( 1 + p i h i σ 2 ) s.t. ∑ i = 1 m p i = P \begin{align} &\text{minimize}\quad \sum_{i=1}^{m}log(1+\frac{p_i h_i}{\sigma^2})\\ &\text{s.t.}\quad \sum_{i=1}^{m}p_i=P \end{align} minimizei=1∑mlog(1+σ2pihi)s.t.i=1∑mpi=P
Solving
- 对于等式约束的条件,可以直接使用拉格朗日乘子法
- 拉格朗日函数为: L ( p i , h i ) = ∑ i = 1 m l o g ( 1 + p i h i σ 2 ) + λ ( P − ∑ i = 1 m p i ) L(p_i,h_i)=\sum_{i=1}^{m}log(1+\frac{p_i h_i}{\sigma^2})+\lambda(P-\sum_{i=1}^{m}p_i) L(pi,hi)=i=1∑mlog(1+σ2pihi)+λ(P−i=1∑mpi)
- 对 p i p_i pi求偏导,并令偏导为0,得到: ∂ L ∂ p i = h i σ 2 ( 1 + p i h i σ 2 ) l n 2 − λ = 0 p i = 1 λ l n 2 − σ 2 h i = μ − σ 2 h i \begin{align} &\frac{\partial L}{\partial p_i}=\frac{\frac{h_i}{\sigma^2}}{(1+\frac{p_i h_i}{\sigma^2})ln2}-\lambda=0 \\ & p_i= \frac{1}{\lambda ln2}-\frac{\sigma^2}{h_i}=\mu-\frac{\sigma^2}{h_i} \end{align} ∂pi∂L=(1+σ2pihi)ln2σ2hi−λ=0pi=λln21−hiσ2=μ−hiσ2
- 由于 p i p_i pi不能小于零,因此有: p i = m a x ( μ − σ 2 h i , 0 ) p_i=max\left(\mu-\frac{\sigma^2}{h_i}, 0\right) pi=max(μ−hiσ2,0)
- 由约束条件 ∑ i = 1 m p i = P \sum_{i=1}^{m}p_i=P ∑i=1mpi=P,我们可以得到 μ \mu μ的表达式如下: P = ∑ i = 1 m ( μ − σ 2 h i ) = m μ − ∑ i = 1 m σ 2 h i μ = P + ∑ i = 1 m σ 2 h i m \begin{align} &P=\sum_{i=1}^{m}(\mu-\frac{\sigma^2}{h_i})=m\mu - \sum_{i=1}^{m}\frac{\sigma^2}{h_i}\\ & \mu=\frac{P+\sum_{i=1}^{m}\frac{\sigma^2}{h_i}}{m} \end{align} P=i=1∑m(μ−hiσ2)=mμ−i=1∑mhiσ2μ=mP+∑i=1mhiσ2
Conclusion
- Water-filling方法的结果为: p i = m a x ( μ − σ 2 h i , 0 ) μ = P + ∑ i = 1 m σ 2 h i m \begin{align} &p_i=max\left(\mu-\frac{\sigma^2}{h_i}, 0\right) \\ &\mu=\frac{P+\sum_{i=1}^{m}\frac{\sigma^2}{h_i}}{m} \end{align} pi=max(μ−hiσ2,0)μ=mP+∑i=1mhiσ2
- Water-filling方法的直观解释如下图:
我们可以将各个信道的强度比作一个水位,而 μ \mu μ则是我们设定的一个水位线,当信道水位低于设定的水位线时,就向其中注水(分配功率)使其能够达到水位线。而当信道水位高于水位线时,就不为其注水(分配功率)。