本题要求将给定的N个正整数按非递增的顺序,填入“螺旋矩阵”。所谓“螺旋矩阵”,是指从左上角第1个格子开始,按顺时针螺旋方向填充。要求矩阵的规模为m行n列,满足条件:m*n等于N;m>=n;且m-n取所有可能值中的最小值。
输入格式:
输入在第1行中给出一个正整数N,第2行给出N个待填充的正整数。所有数字不超过104,相邻数字以空格分隔。
输出格式:
输出螺旋矩阵。每行n个数字,共m行。相邻数字以1个空格分隔,行末不得有多余空格。
输入样例:
12
37 76 20 98 76 42 53 95 60 81 58 93
输出样例:
98 95 93
42 37 81
53 20 76
58 60 76
解题思路:
1.关于m,n的计算,由于开方后,得到的值一定是小于等于该数的平方,所以我们先计算n
2.定义一个二维数组result,result[i][j]记录行号为i,列号为j的值
3.在遍历过程中,一圈一圈地遍历,共 k 圈,k=n/2,每一圈在遍历时分为四条边,每条边的最后一个值留作下一条边的第一个值。
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
int main(){
int N,m,n,cnt=0,k,i,j,wide,high,d;
cin>>N;
std::vector<int> v(N);
for(i=0;i<N;i++)
scanf("%d",&v[i]);
sort(v.begin(), v.end(),greater<int>());
n=sqrt(N);
while(N%n!=0)
n--;
m=N/n;k=n/2;
vector<vector<int>> result(m,vector<int> (n));
for(d=0;d<k;d++){
i=d;wide=n-d-1;high=m-d-1;
for(j=d;j<wide;j++)
result[i][j]=v[cnt++];
for(;i<high;i++)
result[i][j]=v[cnt++];
for(;j>d;--j)
result[i][j]=v[cnt++];
for(;i>d;--i)
result[i][j]=v[cnt++];
}
i=d,j=d;
while(cnt<N)
result[i++][j]=v[cnt++];
for(i=0;i<m;i++){
for(j=0;j<n;j++){
if(j!=0)
printf(" ");
printf("%d",result[i][j]);
}
printf("\n");
}
}