LeetCode64. Minimum Path Sum(C++)

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

解题思路:动态规划,设一个dis二维数组记录没点处的从(0,0)到该点的最短路径,则有dis[i][j] = grid[i][j] + min(dis[i-1][j],dis[i][j-1])

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        vector<vector<int>>dis=grid;
        if(grid.size()==0)
            return 0;
        int m = grid.size(),n = grid[0].size();
        for(int j = 1; j < n; j++)
            dis[0][j] += dis[0][j-1];
        for(int i = 1; i < m; i++){
            for(int j = 0; j < n; j++){
                if(j == 0)
                    dis[i][j] += dis[i-1][j];
                else
                    dis[i][j] += min(dis[i-1][j],dis[i][j-1]);
            }
                
        }
        return dis[m-1][n-1];
    }
    
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值