Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input: [ [1,3,1], [1,5,1], [4,2,1] ] Output: 7 Explanation: Because the path 1→3→1→1→1 minimizes the sum.
解题思路:动态规划,设一个dis二维数组记录没点处的从(0,0)到该点的最短路径,则有dis[i][j] = grid[i][j] + min(dis[i-1][j],dis[i][j-1])
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
vector<vector<int>>dis=grid;
if(grid.size()==0)
return 0;
int m = grid.size(),n = grid[0].size();
for(int j = 1; j < n; j++)
dis[0][j] += dis[0][j-1];
for(int i = 1; i < m; i++){
for(int j = 0; j < n; j++){
if(j == 0)
dis[i][j] += dis[i-1][j];
else
dis[i][j] += min(dis[i-1][j],dis[i][j-1]);
}
}
return dis[m-1][n-1];
}
};