哈夫曼编码

本文介绍了哈夫曼编码的原理,通过构建哈夫曼树来优化编码,以节省存储空间。详细讲述了如何创建哈夫曼树,从叶子结点到根结点的路径作为编码,以及编码转换的过程。在示例中,通过比较普通编码和哈夫曼编码,展示了哈夫曼编码在节省存储空间方面的优势。
摘要由CSDN通过智能技术生成


前言

哈夫曼编码是根据一段数据的成员的占比,来对其编码,频率高的成员编码应该尽量短,这样整体所占的内存就比固定长度编码要小。

字母 A B C D E
普通编码 000 001 010 011 100

那么一个长度为N的字符串,仅由ABCDE组成,进行编码,则占用3N位空间大小。



哈夫曼树

假如一个长度为26的字符串中,A有2个,B有3个,C有6个,D有7个,E有8个。
(1)首先找到出现频率最小的,即A和B,将它们作为一个新的结点AB的左右孩子,频率小的作为左孩子,大的作为右孩子。新的结点AB则包含A和B,出现的频率为5。

(2)现在频率最小的是AB和C,它们再组成一个子树,新结点ABC的频率为11。

(3)当前各部分的频率分别为ABC(11)、D(7)、E(8),因此D和E组成新的子树,新结点DE的频率为15。

(4)最后ABC和DE组成哈夫曼树,ABC为左子树,DE为右子树。

(5)将树的左分支权值设为0,右分支权值设为1。
哈夫曼树



哈夫曼编码

我们将从哈夫曼树的树根到叶子所经过的路径作为叶子的编码。

字母 A B C D E
哈夫曼编码 000 001 01 10 11

普通编码所占用的空间大小:3 × \times × 26 = 78。

哈夫曼编码所占用的空间大小:3 × \times × 2 + 3 × \times × 3 + 2 × \times × 6 + 2 × \times × 7 + 2 × \times × 8 = 57。

减小了27%的存储空间大小。


哈夫曼树的创建

思路:

(1)首先树的创建,应该先定义树的结点;
(2)结点的成员包括此结点的权重weight,初始化为0;以及该结点的左右孩子,这里以结点在数组中位置表示,亦可以用指针表示,初始化为-1;
(3)为了方便从叶向根遍历,因此需要访问其父节点,因此包括parent成员,初始化为-1。

class Node
{
   
  public:
    int lchild = -1, rchild = -1;
    int parent = -1;
    int weight = 0;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值