- 博客(22)
- 收藏
- 关注
原创 Gazebo模拟激光雷达进行距离和强度数据收集range+intensity,反光板导航
我想在gazebo中模拟激光雷达并进行rosbag的录制,但是网上的教程基本都是对range进行设置和记录,而无法收取物体的反射强度,这里给出如何设置物体的光反射强度。所用环境为ubuntu 18.04, ros melodic。为一些物体设置一个高值可以使模拟的2D激光雷达扫描仪输出包含反射器存在的角度的高强度数据成为可能。在上述部分添加相关语句,格式为<laser_retro>255.0</laser_retro>。然后即可rostopic echo /scan 看到收到的range和强度数据。
2023-10-16 16:11:12
2003
1
原创 环境对GNSS的影响以及可以采取的措施
这些障碍物会造成信号的反射、散射、折射等,从而使信号传播路径变长、信号强度减弱、相位延迟等。这些影响会导致GNSS信号的接收质量降低,从而影响位置解算的准确性。采用差分定位(differential positioning)的方法,利用两个或多个接收站点之间的差分测量来消除大气影响、钟差等误差。采用多路径误差(multipath error)的补偿方法,通过接收多条反射路径上的信号来计算出真实的信号路径。使用多个接收天线,以增加接收信号的多样性,提高位置解算的可靠性。
2023-03-11 14:32:12
1844
1
原创 【机器学习、深度学习、python代码速查表】Keras、Numpy、Pandas、SciPy、Matplotlib
深度学习速查表 python
2022-11-27 10:50:17
500
原创 【多传感器融合定位SLAM专栏】前端里程计、IMU预积分、滤波、图优化推导与应用(1)
本专栏基于深蓝学院《多传感器融合定位》课程基础上进行拓展,对多传感器融合SLAM的学习过程进行记录,包括前端里程计、惯性导航原理误差分析、图优化、预积分、滤波等
2022-11-27 09:51:15
1140
原创 【多传感器融合定位SLAM专栏】前端里程计、IMU预积分、滤波、图优化推导与应用(2)
本专栏基于深蓝学院《多传感器融合定位》课程基础上进行拓展,对多传感器融合SLAM的学习过程进行记录,包括前端里程计、惯性导航原理误差分析、图优化、预积分、滤波等
2022-11-27 09:49:51
805
原创 【多传感器融合定位SLAM专栏】前端里程计、IMU预积分、滤波、图优化推导与应用(3)
本专栏基于深蓝学院《多传感器融合定位》课程基础上进行拓展,对多传感器融合SLAM的学习过程进行记录,包括前端里程计、惯性导航原理误差分析、图优化、预积分、滤波等
2022-11-27 09:49:30
337
原创 【多传感器融合定位SLAM专栏】前端里程计、IMU预积分、滤波、图优化推导与应用(4)
本专栏基于深蓝学院《多传感器融合定位》课程基础上进行拓展,对多传感器融合SLAM的学习过程进行记录,包括前端里程计、惯性导航原理误差分析、图优化、预积分、滤波等
2022-11-27 09:48:49
1013
原创 【多传感器融合定位SLAM专栏】前端里程计、IMU预积分、滤波、图优化推导与应用(5)
本专栏基于深蓝学院《多传感器融合定位》课程基础上进行拓展,对多传感器融合SLAM的学习过程进行记录,包括前端里程计、惯性导航原理误差分析、图优化、预积分、滤波等
2022-11-27 09:48:19
648
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅