题目链接:https://vjudge.net/problem/541918/origin
题意:有n个炸弹,位于(xi,yi),爆炸半径为ri,花费为ci。炸弹爆炸时,在其爆炸范围的炸弹都会被引爆,求最少花费使得所有的炸弹都引爆。
如果A能引爆B,那么在A B之间建一条单向边A->B ,然后用Tarjan算法缩点,缩点过程把相连通分量内的那个花费最小的炸弹求出并保存,然后用缩点建立新图,每次引爆入度为0的炸弹即可,
#include<cstdio>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#define ll long long
using namespace std;
const int maxn=1010;
const int maxm=10005;
const int inf=1e9+10;
struct Edge
{
int to,next;
}edge[maxn*maxn*2];
struct Point
{
ll x,y,r;
int val;
}p[maxn];
int head[maxn],tot;
int low[maxn],dfn[maxn],Stack[maxn],belong[maxn];
int index,top;
int scc;
int c[maxn];
int Case=1;
ll dis(Point p1,Point p2)
{
return (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y);
}
bool Instack[maxn];
void addedge(int u,int v)
{
edge[tot].to=v;edge[tot].next=head[u];head[u]=tot++;
}
void tarjan(int u)
{
int v;
low[u]=dfn[u]=++index;
Stack[top++]=u;
Instack[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].to;
if(!dfn[v])
{
tarjan(v);
if(low[u]>low[v])low[u]=low[v];
}
else if(Instack[v]&&low[u]>dfn[v])
low[u]=dfn[v];
}
if(low[u]==dfn[u])
{
scc++;
do{
v=Stack[--top];
Instack[v]=false;
belong[v]=scc;
c[scc]=min(c[scc],p[v].val);
}
while(v!=u);
}
}
int in[maxn],out[maxn];
void solve(int n)
{
memset(dfn,0,sizeof(dfn));
memset(Instack,false,sizeof(Instack));
memset(c,inf,sizeof(c));
index=scc=top=0;
for(int i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i);
}
for(int i=1;i<=scc;i++)
{
in[i]=out[i]=0;
}
for(int u=1;u<=n;u++)
{
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(belong[u]!=belong[v]){
in[belong[v]]++;
}
}
}
ll ans=0;
for(int i=1;i<=scc;i++)
{
if(in[i]==0){
{
ans+=c[i];
}
}
}
printf("Case #%d: %lld\n",Case++,ans);
}
void init()
{
tot=0;
memset(head,-1,sizeof(head));
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld%lld%lld%lld",&p[i].x,&p[i].y,&p[i].r,&p[i].val);
}
int cnt=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)continue;
ll d=dis(p[i],p[j]);
if(d<=p[i].r*p[i].r)
{
addedge(i,j);
cnt++;
}
}
}
solve(n);
}
return 0;
}