剑指 Offer 14- II. 剪绳子 II

剑指 Offer 14- II. 剪绳子 II

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m - 1] 。请问 k[0]k[1]…*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

贪心法

结论:每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!k神的数学证明

  1. n ≤ 3(2, 3) 时,按照规则应不切分,但由于题目要求必须剪成 m>1段,因此必须剪出一段长度为 1的绳子,即返回 n−1
  2. n = 4时,可以拆分成2+2,返回结果2*2=4
  3. n >4时,减掉多个3之后剩下的n=2, 3, 4, 因为2、3不需要再剪了(剪了反而变小);4剪成2x2是最大的,2x2恰巧等于4一个优秀的解释

注意res对1000000007取余一次,最后的结果也要取余。

class Solution {
public:
    int cuttingRope(int n) {
        if(n <= 3) return n - 1;
        if(n == 4) return 4;
        long res = 1, p = 1000000007;
        while(n > 4){
            res *= 3;
            res %= p;
            n -= 3;
        }
        // 最后n的值只有可能是:2、3、4。而2、3、4能得到的最大乘积恰恰就是自身值
        // 因为2、3不需要再剪了(剪了反而变小);4剪成2x2是最大的,2x2恰巧等于4
        return n * res % p;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值