【大数据处理技术】期末复习整理

所用教材:《大数据技术原理与应用——概念、存储、处理、分析与应用(第2版)》,由厦门大学计算机科学系林子雨编著。
教材官网:http://dblab.xmu.edu.cn/post/bigdata/
慕课:http://www.icourse163.org/course/XMU-1002335004
在这里插入图片描述在这里插入图片描述若本文对你有帮助的话,请点赞、关注我!
博客总领目录请看这篇,不看后悔
https://blog.csdn.net/qq_41587612/article/details/104362661
B站同名up猪,欢迎关注我的账号https://space.bilibili.com/204913846

期末考试内容:各章课后习题(源自PPT)+ 各章出一道理论题(答案源自PPT)+ 一道HBase数据库命令题(熟记下方命令) + 一道手写编程题(源自实验四https://blog.csdn.net/qq_41587612/article/details/106458930

PPT内容有来自林子雨老师的PPT,也有我们老师自添的内容。

下方长篇内容总结自PPT,本人认真看后划出重点,若你不想花时间看,可以只看课后习题:

HBase数据库增删改查常用命令操作

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第1章 大数据概述

习题
  1. 第三次信息化浪潮的标志是(D)
    A:个人电脑的普及
    B:虚拟现实技术的普及
    C:互联网的普及
    D:云计算、大数据、物联网技术的普及

  2. 就数据的量级而言,1PB数据是多少TB?(D)
    A. 2048
    B. 1000
    C. 512
    D. 1024

  3. 以下哪个不是大数据时代新兴的技术(D)
    A. Spark
    B. Hadoop
    C. HBase
    D. MySQL

  4. 每种大数据产品都有特定的应用场景,以下哪个产品是用于批处理的(C)
    A. Storm
    B. Dremel
    C. MapReduce
    D. Pregel

  5. 每种大数据产品都有特定的应用场景,以下哪个产品是用于查询分析计算的(D)
    A. MapReduce
    B. HDFS
    C. S4
    D. Dremel

  6. 数据产生方式大致经历了三个阶段,包括(BCD)
    A. 移动互联网数据阶段
    B. 用户原创内容阶段
    C. 运营式系统阶段
    D. 感知式系统阶段

  7. 图领奖获得者、著名数据库专家Jim Gray博士认为,人类自古以来在科学研究上先后经历了四种范式,具体包括(ACD)
    A. 实验科学
    B. 猜想科学
    C. 数据密集型科学
    D. 理论科学

  8. 大数据带来思维方式的三个转变是(ABC)
    A. 全样而非抽样
    B. 效率而非精确
    C. 相关而非因果
    D. 精确而非全面

  9. 大数据的四种主要计算模式包括(ABD)
    A. 流计算
    B. 图计算
    C. 框计算
    D. 查询分析计算

  10. 云计算的典型服务模式包括三种(ABC)
    A. SaaS
    B. IaaS
    C. PaaS
    D. MaaS

第2章 大数据处理架构Hadoop

2.1 概述

2.1.1 Hadoop简介

  Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供系统底层细节透明的分布式基础架构。
  Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中。
  Hadoop的核心是分布式文件系统HDFS(分布式存储)和MapReduce(分布式处理)
  Hadoop被公认为行业大数据标准开源软件,在分布式环境下提供了海量数据的处理能力。
  几乎所有主流厂商都围绕Hadoop提供开发工具、开源软件、商业化工具和技术服务,如谷歌、雅虎、微软、思科、淘宝等,都支持Hadoop。

2.1.2 Hadoop发展简史

  Hadoop最初是由Apache Lucene项目的创始人Doug Cutting开发的文本搜索库。Hadoop源自2002年的Apache Nutch项目——一个开源的网络搜索引擎并且也是Lucene项目的一部分。该搜索引擎框架无法扩展到拥有数十亿网页的网络。
  2003年,Google发布了分布式文件系统GFS方面的论文。
  2004年,Nutch项目模仿GFS开发了自己的分布式文件系统NDFS,也就是HDFS的前身。
  2004年,谷歌公司又发表了另一篇具有深远影响的论文,阐述了MapReduce分布式编程思想。
  2005年,Nutch开源实现了谷歌的MapReduce。
  2006年2月,Nutch中的NDFS和MapReduce开始独立出来,成为Lucene项目的一个子项目,称为Hadoop,同时,Doug Cutting加盟雅虎。
  2008年1月,Hadoop正式成为Apache顶级项目,Hadoop也逐渐开始被雅虎之外的其他公司使用。
  2008年4月,Hadoop打破世界纪录,成为最快排序1TB数据的系统,它采用一个由910个节点构成的集群进行运算,排序时间只用了209秒。
  2009年5月,Hadoop更是把1TB数据排序时间缩短到62秒。Hadoop从此名声大震,迅速发展成为大数据时代最具影响力的开源分布式开发平台,并成为事实上的大数据处理标准。

2.1.3 Hadoop的特性

  Hadoop是一个能够对大量数据进行分布式处理的软件框架,并且是以一种可靠、高效、可伸缩的方式进行处理的,它具有以下几个方面的特性:

  • 高可靠性:采用冗余数据存储方式。
  • 高效性:作为并行分布式计算平台,Hadoop采用分布式存储和分布式处理两大核心技术,能够高效地处理PB级数据。
  • 高可扩展性:可以扩展到数以千计的计算机节点上。
  • 高容错性:能够自动将失败的任务进行重新分配。
  • 成本低:采用廉价的计算机集群,普通用户也很容易用自己的PC搭建Hadoop运行环境。
  • 运行在Linux平台上:基于JAVA语言开发的。
  • 支持多种编程语言:Hadoop上的应用程序也可以使用其他语言编写,如C++。
2.1.4 Hadoop的应用现状

  Hadoop凭借其突出的优势,已经在各个领域得到了广泛的应用,而互联网领域是其应用的主阵地。
  2007年,雅虎在Sunnyvale总部建立了M45——一个包含了4000个处理器和1.5PB容量的Hadoop集群系统。目前,雅虎拥有全球最大的hadoop集群,有大约25000个节点,主要用于支持广告系统与网页搜索。
  Facebook作为全球知名的社交网站,Hadoop是非常理想的选择,Facebook主要将Hadoop平台用于日志处理、推荐系统和数据仓库等方面。
  国内采用Hadoop的公司主要有百度、淘宝、网易、华为、中国移动等,其中,淘宝的Hadoop集群比较大。
在这里插入图片描述

Hadoop在企业中的应用架构图
2.1.5 Apache Hadoop版本演变

  Apache Hadoop版本分为两代,我们将第一代Hadoop称为Hadoop 1.0,第二代Hadoop称为Hadoop 2.0。
  第一代Hadoop包含三个大版本,分别是0.20.x,0.21.x和0.22.x,其中,0.20.x最后演化成1.0.x,变成了稳定版,而0.21.x和0.22.x则增加了NameNode HA和Wire-compatibility两个重大特性。
  第二代Hadoop包含两个版本,分别是0.23.x和2.x,它们完全不同于Hadoop 1.0,是一套全新的架构,均包含HDFS Federation和YARN两个系统。
在这里插入图片描述
  选择 Hadoop版本的考虑因素:
  1)是否开源(即是否免费);2)是否有稳定版;3)是否经实践检验;4)是否有强大的社区支持。

2.1.6 Hadoop各种版本

在这里插入图片描述

2.2 Hadoop生态系统

在这里插入图片描述

组件 功能
HDFS 分布式文件系统
HBase Hadoop上的非关系型的分布式数据库
MapReduce 分布式并行编程模型
YARN 资源管理和调度器
Tez 运行在YARN之上的下一代Hadoop查询处理框架
Hive Hadoop上的数据仓库
Pig 一个基于Hadoop的大规模数据分析平台,提供类似SQL的查询语言Pig Latin
Mahout 提供可扩展的机器学习领域经典算法的实现
Zookeeper 提供分布式协调一致性服务
Flume 一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统
Sqoop 用于在Hadoop与传统数据库之间进行数据传递
Ambari Hadoop快速部署工具,支持Apache Hadoop集群的供应、管理和监控
Kafka 一种高吞吐量的分布式发布订阅消息系统。
Spark 类似于Hadoop MapReduce的通用并行框架
Oozie Hadoop上的工作流管理系统
Storm 流计算框架

2.3 Hadoop的安装与使用(文章开头有实验链接)

2.3.1 SSH登录权限设置

  SSH是什么?SSH为Secure Shell的缩写,是建立在应用层和传输层基础上的安全协议,利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。
  配置SSH的原因:Hadoop名称节点(NameNode)需要启动集群中所有机器的Hadoop守护进程,这个过程需要通过SSH登录来实现。Hadoop并没有提供SSH输入密码登录的形式,因此,为了能够顺利登录每台机器,需要将所有机器配置为名称节点可以无密码登录它们。
  关于三种Shell命令方式的区别:

  1. hadoop fs:适用于任何不同的文件系统,比如本地文件系统和HDFS文件系统。
  2. hadoop dfs:只能适用于HDFS文件系统。
  3. hdfs dfs:也只能适用于HDFS文件系统。
习题
  1. 启动hadoop所有进程的命令是(A)
    A. start-all.sh
    B. start-hdfs.sh
    C. start-hadoop.sh
    D. start-dfs.sh

  2. 以下对Hadoop的说法错误的是(C)
    A. Hadoop2.0增加了NameNode HA和Wire-compatibility两个重大特性
    B. Hadoop的核心是HDFS和MapReduce
    C. Hadoop是基于Java语言开发的,只支持Java语言编程
    D. Hadoop MapReduce是针对谷歌MapReduce的开源实现,通常用于大规模数据集的并行计算

  3. 以下哪个不是hadoop的特性(A)
    A.成本高
    B.高可靠性
    C.高容错性
    D.支持多种编程语言

  4. 以下名词解释不正确的是(D)
    A. Hive:一个基于Hadoop的数据仓库工具,用于对Hadoop文件中的数据集进行数据整理、特殊查询和分析存储
    B. HDFS:分布式文件系统,是Hadoop项目的两大核心之一,是谷歌GFS的开源实现
    C. Zookeeper:针对谷歌Chubby的一个开源实现,是高效可靠的协同工作系统
    D. HBase:提供高可靠性、高性能、分布式的行式数据库,是谷歌BigTable的开源实现

  5. 以下哪个命令可以用来操作HDFS文件(ACD)
    A. hadoop fs
    B. hdfs fs
    C. hdfs dfs
    D. hadoop dfs

第3章 分布式文件系统HDFS

3.1 分布式文件系统

  分布式文件系统:是一种通过网络实现文件在多台主机上进行分布式存储的文件系统。
  分布式文件系统的设计一般采用“客户机/服务器”模式。

3.1.1 计算机集群结构

  分布式文件系统把文件分布存储到多个计算机节点上,成千上万的计算机节点构成计算机集群。
  与之前使用多个处理器和专用高级硬件的并行化处理装置不同,目前的分布式文件系统所采用的计算机集群,都是由普通硬件构成的,这就大大降低了硬件上的开销。
在这里插入图片描述

计算机集群的基本架构图
3.1.2 分布式文件系统的结构

  分布式文件系统在物理结构上是由计算机集群中的多个节点构成的,这些节点分为两类,一类叫“主节点”(Master Node)也被称为“名称结点”(NameNode),另一类叫“从节点”(Slave Node)也被称为“数据节点”(DataNode)
在这里插入图片描述

大规模文件系统的整体结构
3.1.3 分布式文件系统的设计需求

  分布式文件系统的设计目标包括:透明性、并发控制、文件复制、硬件和操作系统的异构性、可伸缩性、容错、安全。

3.2 HDFS简介

  总体而言,HDFS要实现以下目标:兼容廉价的硬件设备、流数据读写、大数据集、简单的文件模型、强大的跨平台兼容性

  HDFS特殊的设计,在实现上述优良特性的同时,也使得自身具有一些应用局限性,主要包括以下几个方面:不适合低延迟数据访问、无法高效存储大量小文件、不支持多用户写入及任意修改文件

3.3 HDFS相关概念

3.3.1 块

  HDFS默认一个块64MB,一个文件被分成多个块,以块作为存储单位。块的大小远远大于普通文件系统,可以最小化寻址开销。
  HDFS寻址不仅包括磁盘寻道开销,还包括数据块的定位开销
  HDFS采用抽象的块概念可以带来以下几个明显的好处:

  • 支持大规模文件存储:
      文件以块为单位进行存储,一个大规模文件可以被分拆成若干个文件块,不同的文件块可以被分发到不同的节点上,因此,一个文件的大小不会受到单个节点的存储容量的限制,可以远远大于网络中任意节点的存储容量。
  • 简化系统设计:
      首先,大大简化了存储管理,因为文件块大小是固定的,这样就可以很容易计算出一个节点可以存储多少文件块;其次,方便了元数据的管理,元数据不需要和文件块一起存储,可以由其他系统负责管理元数据。
  • 适合数据备份:
      每个文件块都可以冗余存储到多个节点上,大大提高了系统的容错性和可用性。
3.3.2 名称节点和数据节点

在这里插入图片描述

HDFS主要组件的功能
  • 名称节点的数据结构
      在HDFS中,名称节点(NameNode)负责管理分布式文件系统的命名空间(Namespace),保存了两个核心的数据结构,即FsImage和EditLog。
    1)FsImage用于维护文件系统树以及文件树中所有的文件和文件夹的元数据。
    2)操作日志文件EditLog中记录了所有针对文件的创建、删除、重命名等操作。
    名称节点记录了每个文件中各个块所在的数据节点的位置信息。
    在这里插入图片描述
名称节点的数据结构图

  FsImage文件包含文件系统中所有目录和文件inode的序列化形式。每个inode是一个文件或目录的元数据的内部表示,并包含此类信息:文件的复制等级、修改和访问时间、访问权限、块大小以及组成文件的块。对于目录,则存储修改时间、权限和配额元数据
  FsImage文件没有记录每个块存储在哪个数据节点。而是由名称节点把这些映射信息保留在内存中,当数据节点加入HDFS集群时,数据节点会把自己所包含的块列表告知给名称节点,此后会定期执行这种告知操作,以确保名称节点的块映射是最新的。

  • 名称节点的启动:
      在名称节点启动的时候,它会将FsImage文件中的内容加载到内存中,之后再执行EditLog文件中的各项操作,使得内存中的元数据和实际的同步,存在内存中的元数据支持客户端的读操作。
      一旦在内存中成功建立文件系统元数据的映射,则创建一个新的FsImage文件和一个空的EditLog文件。
      名称节点起来之后,HDFS中的更新操作会重新写到EditLog文件中,因为FsImage文件一般都很大(GB级别的很常见),如果所有的更新操作都往FsImage文件中添加,这样会导致系统运行的十分缓慢,但是,如果往EditLog文件里面写就不会这样,因为EditLog 要小很多。每次执行写操作之后,且在向客户端发送成功代码之前,edits文件都需要同步更新。
      在名称节点运行期间,HDFS的所有更新操作都是直接写到EditLog中,久而久之, EditLog文件将会变得很大。
      虽然这对名称节点运行时候是没有什么明显影响的,但是,当名称节点重启的时候,名称节点需要先将FsImage里面的所有内容映像到内存中,然后再一条一条地执行EditLog中的记录,当EditLog文件非常大的时候,会导致名称节点启动操作非常慢,而在这段时间内HDFS系统处于安全模式,一直无法对外提供写操作,影响了用户的使用。

  • 名称节点运行期间EditLog不断变大的问题如何解决?
      答案是:SecondaryNameNode第二名称节点。
      第二名称节点是HDFS架构中的一个组成部分,它是用来保存名称节点中对HDFS 元数据信息的备份,并减少名称节点重启的时间。SecondaryNameNode一般是单独运行在一台机器上。

  • 数据节点(DataNode)
      数据节点是分布式文件系统HDFS的工作节点,负责数据的存储和读取,会根据客户端或者是名称节点的调度来进行数据的存储和检索,并且向名称节点定期发送自己所存储的块的列表。
      每个数据节点中的数据会被保存在各自节点的本地Linux文件系统中。

3.3.3 第二名称节点

在这里插入图片描述

(1)SecondaryNameNode会定期和NameNode通信,请求其停止使用EditLog文件,暂时将新的写操作写到一个新的文件edit.new上来,这个操作是瞬间完成,上层写日志的函数完全感觉不到差别;
(2)SecondaryNameNode通过HTTP GET方式从NameNode上获取到FsImage和EditLog文件,并下载到本地的相应目录下;
(3)SecondaryNameNode将下载下来的FsImage载入到内存,然后一条一条地执行EditLog文件中的各项更新操作,使得内存中的FsImage保持最新;这个过程就是EditLog和FsImage文件合并;
(4)SecondaryNameNode执行完(3)操作之后,会通过post方式将新的FsImage文件发送到NameNode节点上;
(5)NameNode将从SecondaryNameNode接收到的新的FsImage替换旧的FsImage文件,同时将edit.new替换EditLog文件,通过这个过程EditLog就变小了。

3.4 HDFS体系结构

3.4.1 HDFS体系结构概述

  HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群包括一个名称节点(NameNode)和若干个数据节点(DataNode)。名称节点作为中心服务器,负责管理文件系统的命名空间及客户端对文件的访问。集群中的数据节点一般是一个节点运行一个数据节点进程,负责处理文件系统客户端的读/写请求,在名称节点的统一调度下进行数据块的创建、删除和复制等操作。每个数据节点的数据实际上是保存在本地Linux文件系统中的。
在这里插入图片描述

HDFS体系结构图
3.4.2 HDFS命名空间管理

  HDFS的命名空间包含目录、文件和块。
  在HDFS1.0体系结构中,在整个HDFS集群中只有一个命名空间,并且只有唯一一个名称节点,该节点负责对这个命名空间进行管理。
  HDFS使用的是传统的分级文件体系,因此,用户可以像使用普通文件系统一样,创建、删除目录和文件,在目录间转移文件,重命名文件等。

3.4.3 通信协议

  HDFS是一个部署在集群上的分布式文件系统,因此,很多数据需要通过网络进行传输。
  所有的HDFS通信协议都是构建在TCP/IP协议基础之上的。
  客户端通过一个可配置的端口向名称节点主动发起TCP连接,并使用客户端协议与名称节点进行交互。
  名称节点和数据节点之间则使用数据节点协议进行交互。
  客户端与数据节点的交互是通过RPC(Remote Procedure Call远程过程调用)来实现的。在设计上,名称节点不会主动发起RPC,而是响应来自客户端和数据节点的RPC请求。
  客户端是用户操作HDFS最常用的方式,HDFS在部署时都提供了客户端。
  HDFS客户端是一个库,暴露了HDFS文件系统接口,这些接口隐藏了HDFS实现中的大部分复杂性。
  严格来说,客户端并不算是HDFS的一部分。
  客户端可以支持打开、读取、写入等常见的操作,并且提供了类似Shell的命令行方式来访问HDFS中的数据。
  此外,HDFS也提供了Java API,作为应用程序访问文件系统的客户端编程接口。

3.4.5 HDFS体系结构的局限性

  HDFS只设置唯一 一个名称节点,这样做虽然大大简化了系统设计,但也带来了一些明显的局限性,具体如下:
(1)命名空间的限制:名称节点是保存在内存中的,因此,名称节点能够容纳的对象(文件、块)的个数会受到内存空间大小的限制。
(2)性能的瓶颈:整个分布式文件系统的吞吐量,受限于单个名称节点的吞吐量。
(3)隔离问题:由于集群中只有一个名称节点,只有一个命名空间,因此,无法对不同应用程序进行隔离。
(4)集群的可用性:一旦这个唯一的名称节点发生故障,会导致整个集群变得不可用。

3.5 HDFS存储原理

3.5.1 冗余数据保存

  作为一个分布式文件系统,为了保证系统的容错性和可用性,HDFS采用了多副本方式对数据进行冗余存储,通常一个数据块的多个副本会被分布到不同的数据节点上,如图3-5所示,数据块1被分别存放到数据节点A和C上,数据块2被存放在数据节点A和B上。这种多副本方式具有以下几个优点:
  (1)加快数据传输速度;(2)容易检查数据错误;(3)保证数据可靠性。
在这里插入图片描述

图3-5 HDFS数据块多副本存储
3.5.2 数据存取策略
  1. 数据存放
      第一个副本:放置在上传文件的数据节点;如果是集群外提交,则随机挑选一台磁盘不太满、CPU不太忙的节点。
      第二个副本:放置在与第一个副本不同的机架的节点上。
      第三个副本:与第一个副本相同机架的其他节点上。更多副本:随机节点。
    在这里插入图片描述

  2. 数据读取
      HDFS提供了一个API可以确定一个数据节点所属的机架ID,客户端也可以调用API获取自己所属的机架ID。
      当客户端读取数据时,从名称节点获得数据块不同副本的存放位置列表,列表中包含了副本所在的数据节点,可以调用API来确定客户端和这些数据节点所属的机架ID,当发现某个数据块副本对应的机架ID和客户端对应的机架ID相同时,就优先选择该副本读取数据,如果没有发现,就随机选择一个副本读取数据。

  3. 数据复制
      HDFS的数据复制采用了流水线复制的策略。文件块向HDFS集群中的名称节点发起写请求,名称节点选择一个数据节点列表返回给客户端,客户端把数据首先写入列表中的第一个数据节点,同时把列表传给第一个数据节点,第一个数据节点接收到4kb数据的时候,写入本地,并且向列表中的第二个节点发送连接请求,把4kb的数据和列表传给第二个节点,第二个节点同第一个节点,依次到最后一个节点。

3.5.3 数据错误与恢复

  HDFS具有较高的容错性,可以兼容廉价的硬件,它把硬件出错看作一种常态,而不是异常,并设计了相应的机制检测数据错误和进行自动恢复,主要包括以下几种情形:

  1. 名称节点出错
      名称节点保存了所有的元数据信息,其中,最核心的两大数据结构是FsImage和Editlog,如果这两个文件发生损坏,那么整个HDFS实例将失效。因此,HDFS设置了备份机制,把这些核心文件同步复制到备份服务器SecondaryNameNode上。当名称节点出错时,就可以根据备份服务器SecondaryNameNode中的FsImage和Editlog数据进行恢复。
  2. 数据节点出错
      每个数据节点会定期向名称节点发送“心跳”信息,向名称节点报告自己的状态。
    当数据节点发生故障,或者网络发生断网时,名称节点就无法收到来自一些数据节点的心跳信息,这时,这些数据节点就会被标记为“宕机”,节点上面的所有数据都会被标记为“不可读”,名称节点不会再给它们发送任何I/O请求。
      这时,有可能出现一种情形,即由于一些数据节点的不可用,会导致一些数据块的副本数量小于冗余因子。
      名称节点会定期检查这种情况,一旦发现某个数据块的副本数量小于冗余因子,就会启动数据冗余复制,为它生成新的副本。
      HDFS和其它分布式文件系统的最大区别就是可以调整冗余数据的位置。
  3. 数据出错
      网络传输和磁盘错误等因素,都会造成数据错误。
      客户端在读取到数据后,会采用md5和sha1对数据块进行校验,以确定读取到正确的数据。
      在文件被创建时,客户端就会对每一个文件块进行信息摘录,并把这些信息写入到同一个路径的隐藏文件里面。
      当客户端读取文件的时候,会先读取该信息文件,然后,利用该信息文件对每个读取的数据块进行校验,如果校验出错,客户端就会请求到另外一个数据节点读取该文件块,并且向名称节点报告这个文件块有错误,名称节点会定期检查并且重新复制这个块。
习题
  1. HDFS的命名空间不包含(D)
    A. 块
    B. 文件
    C. 目录
    D. 字节

  2. 对HDFS通信协议的理解错误的是(B)
    A. 名称节点和数据节点之间则使用数据节点协议进行交互。
    B. HDFS通信协议都是构建在IoT协议基础之上的。
    C. 客户端通过一个可配置的端口向名称节点主动发起TCP连接,并使用客户端协议与名称节点进行交互。
    D. 客户端与数据节点的交互是通过RPC(Remote Procedure Call)来实现的。

  3. 采用多副本冗余存储的优势不包含(A)
    A.节约存储空间
    B.保证数据可靠性
    C.加快数据传输速度
    D.容易检查数据错误

  4. 分布式文件系统HDFS采用了主从结构模型,由计算机集群中的多个节点构成的,这些节点分为两类,一类存储元数据叫 ,另一类存储具体数据叫(B)
    A.从节点,主节点
    B.名称节点,数据节点
    C.名称节点

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值