所用教材:《大数据技术原理与应用——概念、存储、处理、分析与应用(第2版)》,由厦门大学计算机科学系林子雨编著。
教材官网:http://dblab.xmu.edu.cn/post/bigdata/
慕课:http://www.icourse163.org/course/XMU-1002335004
若本文对你有帮助的话,请点赞、关注我!
博客总领目录请看这篇,不看后悔
https://blog.csdn.net/qq_41587612/article/details/104362661
B站同名up猪,欢迎关注我的账号https://space.bilibili.com/204913846
期末考试内容:各章课后习题(源自PPT)+ 各章出一道理论题(答案源自PPT)+ 一道HBase数据库命令题(熟记下方命令) + 一道手写编程题(源自实验四https://blog.csdn.net/qq_41587612/article/details/106458930)
PPT内容有来自林子雨老师的PPT,也有我们老师自添的内容。
下方长篇内容总结自PPT,本人认真看后划出重点,若你不想花时间看,可以只看课后习题:
- 第一篇:大数据基础
- 第二篇 大数据存储与管理
- 第三篇:大数据处理与分析
- 第7章 MapReduce
- 第8章 Hadoop架构再探讨
- 第9章 Spark
第10章 流计算第11章 图计算
HBase数据库增删改查常用命令操作
第1章 大数据概述
-
第三次信息化浪潮的标志是(D)
A:个人电脑的普及
B:虚拟现实技术的普及
C:互联网的普及
D:云计算、大数据、物联网技术的普及 -
就数据的量级而言,1PB数据是多少TB?(D)
A. 2048
B. 1000
C. 512
D. 1024 -
以下哪个不是大数据时代新兴的技术(D)
A. Spark
B. Hadoop
C. HBase
D. MySQL -
每种大数据产品都有特定的应用场景,以下哪个产品是用于批处理的(C)
A. Storm
B. Dremel
C. MapReduce
D. Pregel -
每种大数据产品都有特定的应用场景,以下哪个产品是用于查询分析计算的(D)
A. MapReduce
B. HDFS
C. S4
D. Dremel -
数据产生方式大致经历了三个阶段,包括(BCD)
A. 移动互联网数据阶段
B. 用户原创内容阶段
C. 运营式系统阶段
D. 感知式系统阶段 -
图领奖获得者、著名数据库专家Jim Gray博士认为,人类自古以来在科学研究上先后经历了四种范式,具体包括(ACD)
A. 实验科学
B. 猜想科学
C. 数据密集型科学
D. 理论科学 -
大数据带来思维方式的三个转变是(ABC)
A. 全样而非抽样
B. 效率而非精确
C. 相关而非因果
D. 精确而非全面 -
大数据的四种主要计算模式包括(ABD)
A. 流计算
B. 图计算
C. 框计算
D. 查询分析计算 -
云计算的典型服务模式包括三种(ABC)
A. SaaS
B. IaaS
C. PaaS
D. MaaS
第2章 大数据处理架构Hadoop
2.1 概述
2.1.1 Hadoop简介
Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供系统底层细节透明的分布式基础架构。
Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中。
Hadoop的核心是分布式文件系统HDFS(分布式存储)和MapReduce(分布式处理)。
Hadoop被公认为行业大数据标准开源软件,在分布式环境下提供了海量数据的处理能力。
几乎所有主流厂商都围绕Hadoop提供开发工具、开源软件、商业化工具和技术服务,如谷歌、雅虎、微软、思科、淘宝等,都支持Hadoop。
2.1.2 Hadoop发展简史
Hadoop最初是由Apache Lucene项目的创始人Doug Cutting开发的文本搜索库。Hadoop源自2002年的Apache Nutch项目——一个开源的网络搜索引擎并且也是Lucene项目的一部分。该搜索引擎框架无法扩展到拥有数十亿网页的网络。
2003年,Google发布了分布式文件系统GFS方面的论文。
2004年,Nutch项目模仿GFS开发了自己的分布式文件系统NDFS,也就是HDFS的前身。
2004年,谷歌公司又发表了另一篇具有深远影响的论文,阐述了MapReduce分布式编程思想。
2005年,Nutch开源实现了谷歌的MapReduce。
2006年2月,Nutch中的NDFS和MapReduce开始独立出来,成为Lucene项目的一个子项目,称为Hadoop,同时,Doug Cutting加盟雅虎。
2008年1月,Hadoop正式成为Apache顶级项目,Hadoop也逐渐开始被雅虎之外的其他公司使用。
2008年4月,Hadoop打破世界纪录,成为最快排序1TB数据的系统,它采用一个由910个节点构成的集群进行运算,排序时间只用了209秒。
2009年5月,Hadoop更是把1TB数据排序时间缩短到62秒。Hadoop从此名声大震,迅速发展成为大数据时代最具影响力的开源分布式开发平台,并成为事实上的大数据处理标准。
2.1.3 Hadoop的特性
Hadoop是一个能够对大量数据进行分布式处理的软件框架,并且是以一种可靠、高效、可伸缩的方式进行处理的,它具有以下几个方面的特性:
- 高可靠性:采用冗余数据存储方式。
- 高效性:作为并行分布式计算平台,Hadoop采用分布式存储和分布式处理两大核心技术,能够高效地处理PB级数据。
- 高可扩展性:可以扩展到数以千计的计算机节点上。
- 高容错性:能够自动将失败的任务进行重新分配。
- 成本低:采用廉价的计算机集群,普通用户也很容易用自己的PC搭建Hadoop运行环境。
- 运行在Linux平台上:基于JAVA语言开发的。
- 支持多种编程语言:Hadoop上的应用程序也可以使用其他语言编写,如C++。
2.1.4 Hadoop的应用现状
Hadoop凭借其突出的优势,已经在各个领域得到了广泛的应用,而互联网领域是其应用的主阵地。
2007年,雅虎在Sunnyvale总部建立了M45——一个包含了4000个处理器和1.5PB容量的Hadoop集群系统。目前,雅虎拥有全球最大的hadoop集群,有大约25000个节点,主要用于支持广告系统与网页搜索。
Facebook作为全球知名的社交网站,Hadoop是非常理想的选择,Facebook主要将Hadoop平台用于日志处理、推荐系统和数据仓库等方面。
国内采用Hadoop的公司主要有百度、淘宝、网易、华为、中国移动等,其中,淘宝的Hadoop集群比较大。
2.1.5 Apache Hadoop版本演变
Apache Hadoop版本分为两代,我们将第一代Hadoop称为Hadoop 1.0,第二代Hadoop称为Hadoop 2.0。
第一代Hadoop包含三个大版本,分别是0.20.x,0.21.x和0.22.x,其中,0.20.x最后演化成1.0.x,变成了稳定版,而0.21.x和0.22.x则增加了NameNode HA和Wire-compatibility两个重大特性。
第二代Hadoop包含两个版本,分别是0.23.x和2.x,它们完全不同于Hadoop 1.0,是一套全新的架构,均包含HDFS Federation和YARN两个系统。
选择 Hadoop版本的考虑因素:
1)是否开源(即是否免费);2)是否有稳定版;3)是否经实践检验;4)是否有强大的社区支持。
2.1.6 Hadoop各种版本
2.2 Hadoop生态系统
组件 | 功能 |
---|---|
HDFS | 分布式文件系统 |
HBase | Hadoop上的非关系型的分布式数据库 |
MapReduce | 分布式并行编程模型 |
YARN | 资源管理和调度器 |
Tez | 运行在YARN之上的下一代Hadoop查询处理框架 |
Hive | Hadoop上的数据仓库 |
Pig | 一个基于Hadoop的大规模数据分析平台,提供类似SQL的查询语言Pig Latin |
Mahout | 提供可扩展的机器学习领域经典算法的实现 |
Zookeeper | 提供分布式协调一致性服务 |
Flume | 一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统 |
Sqoop | 用于在Hadoop与传统数据库之间进行数据传递 |
Ambari | Hadoop快速部署工具,支持Apache Hadoop集群的供应、管理和监控 |
Kafka | 一种高吞吐量的分布式发布订阅消息系统。 |
Spark | 类似于Hadoop MapReduce的通用并行框架 |
Oozie | Hadoop上的工作流管理系统 |
Storm | 流计算框架 |
2.3 Hadoop的安装与使用(文章开头有实验链接)
2.3.1 SSH登录权限设置
SSH是什么?SSH为Secure Shell的缩写,是建立在应用层和传输层基础上的安全协议,利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。
配置SSH的原因:Hadoop名称节点(NameNode)需要启动集群中所有机器的Hadoop守护进程,这个过程需要通过SSH登录来实现。Hadoop并没有提供SSH输入密码登录的形式,因此,为了能够顺利登录每台机器,需要将所有机器配置为名称节点可以无密码登录它们。
关于三种Shell命令方式的区别:
- hadoop fs:适用于任何不同的文件系统,比如本地文件系统和HDFS文件系统。
- hadoop dfs:只能适用于HDFS文件系统。
- hdfs dfs:也只能适用于HDFS文件系统。
-
启动hadoop所有进程的命令是(A)
A. start-all.sh
B. start-hdfs.sh
C. start-hadoop.sh
D. start-dfs.sh -
以下对Hadoop的说法错误的是(C)
A. Hadoop2.0增加了NameNode HA和Wire-compatibility两个重大特性
B. Hadoop的核心是HDFS和MapReduce
C. Hadoop是基于Java语言开发的,只支持Java语言编程
D. Hadoop MapReduce是针对谷歌MapReduce的开源实现,通常用于大规模数据集的并行计算 -
以下哪个不是hadoop的特性(A)
A.成本高
B.高可靠性
C.高容错性
D.支持多种编程语言 -
以下名词解释不正确的是(D)
A. Hive:一个基于Hadoop的数据仓库工具,用于对Hadoop文件中的数据集进行数据整理、特殊查询和分析存储
B. HDFS:分布式文件系统,是Hadoop项目的两大核心之一,是谷歌GFS的开源实现
C. Zookeeper:针对谷歌Chubby的一个开源实现,是高效可靠的协同工作系统
D. HBase:提供高可靠性、高性能、分布式的行式数据库,是谷歌BigTable的开源实现 -
以下哪个命令可以用来操作HDFS文件(ACD)
A. hadoop fs
B. hdfs fs
C. hdfs dfs
D. hadoop dfs
第3章 分布式文件系统HDFS
3.1 分布式文件系统
分布式文件系统:是一种通过网络实现文件在多台主机上进行分布式存储的文件系统。
分布式文件系统的设计一般采用“客户机/服务器”模式。
3.1.1 计算机集群结构
分布式文件系统把文件分布存储到多个计算机节点上,成千上万的计算机节点构成计算机集群。
与之前使用多个处理器和专用高级硬件的并行化处理装置不同,目前的分布式文件系统所采用的计算机集群,都是由普通硬件构成的,这就大大降低了硬件上的开销。
3.1.2 分布式文件系统的结构
分布式文件系统在物理结构上是由计算机集群中的多个节点构成的,这些节点分为两类,一类叫“主节点”(Master Node)也被称为“名称结点”(NameNode),另一类叫“从节点”(Slave Node)也被称为“数据节点”(DataNode)。
3.1.3 分布式文件系统的设计需求
分布式文件系统的设计目标包括:透明性、并发控制、文件复制、硬件和操作系统的异构性、可伸缩性、容错、安全。
3.2 HDFS简介
总体而言,HDFS要实现以下目标:兼容廉价的硬件设备、流数据读写、大数据集、简单的文件模型、强大的跨平台兼容性。
HDFS特殊的设计,在实现上述优良特性的同时,也使得自身具有一些应用局限性,主要包括以下几个方面:不适合低延迟数据访问、无法高效存储大量小文件、不支持多用户写入及任意修改文件。
3.3 HDFS相关概念
3.3.1 块
HDFS默认一个块64MB,一个文件被分成多个块,以块作为存储单位。块的大小远远大于普通文件系统,可以最小化寻址开销。
HDFS寻址不仅包括磁盘寻道开销,还包括数据块的定位开销。
HDFS采用抽象的块概念可以带来以下几个明显的好处:
- 支持大规模文件存储:
文件以块为单位进行存储,一个大规模文件可以被分拆成若干个文件块,不同的文件块可以被分发到不同的节点上,因此,一个文件的大小不会受到单个节点的存储容量的限制,可以远远大于网络中任意节点的存储容量。 - 简化系统设计:
首先,大大简化了存储管理,因为文件块大小是固定的,这样就可以很容易计算出一个节点可以存储多少文件块;其次,方便了元数据的管理,元数据不需要和文件块一起存储,可以由其他系统负责管理元数据。 - 适合数据备份:
每个文件块都可以冗余存储到多个节点上,大大提高了系统的容错性和可用性。
3.3.2 名称节点和数据节点
- 名称节点的数据结构
在HDFS中,名称节点(NameNode)负责管理分布式文件系统的命名空间(Namespace),保存了两个核心的数据结构,即FsImage和EditLog。
1)FsImage用于维护文件系统树以及文件树中所有的文件和文件夹的元数据。
2)操作日志文件EditLog中记录了所有针对文件的创建、删除、重命名等操作。
名称节点记录了每个文件中各个块所在的数据节点的位置信息。
FsImage文件包含文件系统中所有目录和文件inode的序列化形式。每个inode是一个文件或目录的元数据的内部表示,并包含此类信息:文件的复制等级、修改和访问时间、访问权限、块大小以及组成文件的块。对于目录,则存储修改时间、权限和配额元数据。
FsImage文件没有记录每个块存储在哪个数据节点。而是由名称节点把这些映射信息保留在内存中,当数据节点加入HDFS集群时,数据节点会把自己所包含的块列表告知给名称节点,此后会定期执行这种告知操作,以确保名称节点的块映射是最新的。
-
名称节点的启动:
在名称节点启动的时候,它会将FsImage文件中的内容加载到内存中,之后再执行EditLog文件中的各项操作,使得内存中的元数据和实际的同步,存在内存中的元数据支持客户端的读操作。
一旦在内存中成功建立文件系统元数据的映射,则创建一个新的FsImage文件和一个空的EditLog文件。
名称节点起来之后,HDFS中的更新操作会重新写到EditLog文件中,因为FsImage文件一般都很大(GB级别的很常见),如果所有的更新操作都往FsImage文件中添加,这样会导致系统运行的十分缓慢,但是,如果往EditLog文件里面写就不会这样,因为EditLog 要小很多。每次执行写操作之后,且在向客户端发送成功代码之前,edits文件都需要同步更新。
在名称节点运行期间,HDFS的所有更新操作都是直接写到EditLog中,久而久之, EditLog文件将会变得很大。
虽然这对名称节点运行时候是没有什么明显影响的,但是,当名称节点重启的时候,名称节点需要先将FsImage里面的所有内容映像到内存中,然后再一条一条地执行EditLog中的记录,当EditLog文件非常大的时候,会导致名称节点启动操作非常慢,而在这段时间内HDFS系统处于安全模式,一直无法对外提供写操作,影响了用户的使用。 -
名称节点运行期间EditLog不断变大的问题如何解决?
答案是:SecondaryNameNode第二名称节点。
第二名称节点是HDFS架构中的一个组成部分,它是用来保存名称节点中对HDFS 元数据信息的备份,并减少名称节点重启的时间。SecondaryNameNode一般是单独运行在一台机器上。 -
数据节点(DataNode)
数据节点是分布式文件系统HDFS的工作节点,负责数据的存储和读取,会根据客户端或者是名称节点的调度来进行数据的存储和检索,并且向名称节点定期发送自己所存储的块的列表。
每个数据节点中的数据会被保存在各自节点的本地Linux文件系统中。
3.3.3 第二名称节点
(1)SecondaryNameNode会定期和NameNode通信,请求其停止使用EditLog文件,暂时将新的写操作写到一个新的文件edit.new上来,这个操作是瞬间完成,上层写日志的函数完全感觉不到差别;
(2)SecondaryNameNode通过HTTP GET方式从NameNode上获取到FsImage和EditLog文件,并下载到本地的相应目录下;
(3)SecondaryNameNode将下载下来的FsImage载入到内存,然后一条一条地执行EditLog文件中的各项更新操作,使得内存中的FsImage保持最新;这个过程就是EditLog和FsImage文件合并;
(4)SecondaryNameNode执行完(3)操作之后,会通过post方式将新的FsImage文件发送到NameNode节点上;
(5)NameNode将从SecondaryNameNode接收到的新的FsImage替换旧的FsImage文件,同时将edit.new替换EditLog文件,通过这个过程EditLog就变小了。
3.4 HDFS体系结构
3.4.1 HDFS体系结构概述
HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群包括一个名称节点(NameNode)和若干个数据节点(DataNode)。名称节点作为中心服务器,负责管理文件系统的命名空间及客户端对文件的访问。集群中的数据节点一般是一个节点运行一个数据节点进程,负责处理文件系统客户端的读/写请求,在名称节点的统一调度下进行数据块的创建、删除和复制等操作。每个数据节点的数据实际上是保存在本地Linux文件系统中的。
3.4.2 HDFS命名空间管理
HDFS的命名空间包含目录、文件和块。
在HDFS1.0体系结构中,在整个HDFS集群中只有一个命名空间,并且只有唯一一个名称节点,该节点负责对这个命名空间进行管理。
HDFS使用的是传统的分级文件体系,因此,用户可以像使用普通文件系统一样,创建、删除目录和文件,在目录间转移文件,重命名文件等。
3.4.3 通信协议
HDFS是一个部署在集群上的分布式文件系统,因此,很多数据需要通过网络进行传输。
所有的HDFS通信协议都是构建在TCP/IP协议基础之上的。
客户端通过一个可配置的端口向名称节点主动发起TCP连接,并使用客户端协议与名称节点进行交互。
名称节点和数据节点之间则使用数据节点协议进行交互。
客户端与数据节点的交互是通过RPC(Remote Procedure Call远程过程调用)来实现的。在设计上,名称节点不会主动发起RPC,而是响应来自客户端和数据节点的RPC请求。
客户端是用户操作HDFS最常用的方式,HDFS在部署时都提供了客户端。
HDFS客户端是一个库,暴露了HDFS文件系统接口,这些接口隐藏了HDFS实现中的大部分复杂性。
严格来说,客户端并不算是HDFS的一部分。
客户端可以支持打开、读取、写入等常见的操作,并且提供了类似Shell的命令行方式来访问HDFS中的数据。
此外,HDFS也提供了Java API,作为应用程序访问文件系统的客户端编程接口。
3.4.5 HDFS体系结构的局限性
HDFS只设置唯一 一个名称节点,这样做虽然大大简化了系统设计,但也带来了一些明显的局限性,具体如下:
(1)命名空间的限制:名称节点是保存在内存中的,因此,名称节点能够容纳的对象(文件、块)的个数会受到内存空间大小的限制。
(2)性能的瓶颈:整个分布式文件系统的吞吐量,受限于单个名称节点的吞吐量。
(3)隔离问题:由于集群中只有一个名称节点,只有一个命名空间,因此,无法对不同应用程序进行隔离。
(4)集群的可用性:一旦这个唯一的名称节点发生故障,会导致整个集群变得不可用。
3.5 HDFS存储原理
3.5.1 冗余数据保存
作为一个分布式文件系统,为了保证系统的容错性和可用性,HDFS采用了多副本方式对数据进行冗余存储,通常一个数据块的多个副本会被分布到不同的数据节点上,如图3-5所示,数据块1被分别存放到数据节点A和C上,数据块2被存放在数据节点A和B上。这种多副本方式具有以下几个优点:
(1)加快数据传输速度;(2)容易检查数据错误;(3)保证数据可靠性。
3.5.2 数据存取策略
-
数据存放
第一个副本:放置在上传文件的数据节点;如果是集群外提交,则随机挑选一台磁盘不太满、CPU不太忙的节点。
第二个副本:放置在与第一个副本不同的机架的节点上。
第三个副本:与第一个副本相同机架的其他节点上。更多副本:随机节点。
-
数据读取
HDFS提供了一个API可以确定一个数据节点所属的机架ID,客户端也可以调用API获取自己所属的机架ID。
当客户端读取数据时,从名称节点获得数据块不同副本的存放位置列表,列表中包含了副本所在的数据节点,可以调用API来确定客户端和这些数据节点所属的机架ID,当发现某个数据块副本对应的机架ID和客户端对应的机架ID相同时,就优先选择该副本读取数据,如果没有发现,就随机选择一个副本读取数据。 -
数据复制
HDFS的数据复制采用了流水线复制的策略。文件块向HDFS集群中的名称节点发起写请求,名称节点选择一个数据节点列表返回给客户端,客户端把数据首先写入列表中的第一个数据节点,同时把列表传给第一个数据节点,第一个数据节点接收到4kb数据的时候,写入本地,并且向列表中的第二个节点发送连接请求,把4kb的数据和列表传给第二个节点,第二个节点同第一个节点,依次到最后一个节点。
3.5.3 数据错误与恢复
HDFS具有较高的容错性,可以兼容廉价的硬件,它把硬件出错看作一种常态,而不是异常,并设计了相应的机制检测数据错误和进行自动恢复,主要包括以下几种情形:
- 名称节点出错
名称节点保存了所有的元数据信息,其中,最核心的两大数据结构是FsImage和Editlog,如果这两个文件发生损坏,那么整个HDFS实例将失效。因此,HDFS设置了备份机制,把这些核心文件同步复制到备份服务器SecondaryNameNode上。当名称节点出错时,就可以根据备份服务器SecondaryNameNode中的FsImage和Editlog数据进行恢复。 - 数据节点出错
每个数据节点会定期向名称节点发送“心跳”信息,向名称节点报告自己的状态。
当数据节点发生故障,或者网络发生断网时,名称节点就无法收到来自一些数据节点的心跳信息,这时,这些数据节点就会被标记为“宕机”,节点上面的所有数据都会被标记为“不可读”,名称节点不会再给它们发送任何I/O请求。
这时,有可能出现一种情形,即由于一些数据节点的不可用,会导致一些数据块的副本数量小于冗余因子。
名称节点会定期检查这种情况,一旦发现某个数据块的副本数量小于冗余因子,就会启动数据冗余复制,为它生成新的副本。
HDFS和其它分布式文件系统的最大区别就是可以调整冗余数据的位置。 - 数据出错
网络传输和磁盘错误等因素,都会造成数据错误。
客户端在读取到数据后,会采用md5和sha1对数据块进行校验,以确定读取到正确的数据。
在文件被创建时,客户端就会对每一个文件块进行信息摘录,并把这些信息写入到同一个路径的隐藏文件里面。
当客户端读取文件的时候,会先读取该信息文件,然后,利用该信息文件对每个读取的数据块进行校验,如果校验出错,客户端就会请求到另外一个数据节点读取该文件块,并且向名称节点报告这个文件块有错误,名称节点会定期检查并且重新复制这个块。
-
HDFS的命名空间不包含(D)
A. 块
B. 文件
C. 目录
D. 字节 -
对HDFS通信协议的理解错误的是(B)
A. 名称节点和数据节点之间则使用数据节点协议进行交互。
B. HDFS通信协议都是构建在IoT协议基础之上的。
C. 客户端通过一个可配置的端口向名称节点主动发起TCP连接,并使用客户端协议与名称节点进行交互。
D. 客户端与数据节点的交互是通过RPC(Remote Procedure Call)来实现的。 -
采用多副本冗余存储的优势不包含(A)
A.节约存储空间
B.保证数据可靠性
C.加快数据传输速度
D.容易检查数据错误 -
分布式文件系统HDFS采用了主从结构模型,由计算机集群中的多个节点构成的,这些节点分为两类,一类存储元数据叫 ,另一类存储具体数据叫(B)
A.从节点,主节点
B.名称节点,数据节点
C.名称节点