利用图嵌入和图神经网络实现社交网络中的影响力最大化

本文提出了一种结合Struct2vec嵌入和图神经网络(GNN)的影响力最大化新方法。通过将影响力最大化问题转化为伪回归任务,使用节点的结构身份生成嵌入,并通过GNN处理,预测节点在信息扩散模型(如SIR和IC模型)下的影响。实验结果显示,这种方法在多种真实网络上优于传统和现代影响力最大化算法。
摘要由CSDN通过智能技术生成

ABSTRACT

随着近年来技术和移动网络的蓬勃发展,在线社交网络已成为我们日常生活中不可或缺的一部分。这些虚拟网络将世界各地的人们联系在一起,为他们提供了推广产品和想法的绝佳平台。通常情况下,某些用户比社交网络上的其他用户更有影响力。有效识别有影响力的用户以在网络上最大化特定信息的过程被称为影响力最大化(IM)。在本文中,我们利用图嵌入和图神经网络的思想,提出了一种新的影响最大化方法。 本研究旨在将复杂网络中的影响力最大化问题转化为伪回归问题。作为我们方法的一部分,首先,我们使用struc2vec节点嵌入来生成网络中每个节点的嵌入,并且所获得的嵌入充当每个节点的特征。然后将节点及其特征输入到基于图神经网络(GNN)的回归器中。在易感感染恢复(SIR)和独立级联(IC)信息扩散模型下,通过计算每个节点的影响来获得训练回归任务的GNN所需的标签。然后,我们通过对合成测试网络进行参数分析来选择最优训练网络。最后,使用训练后的模型来预测节点对目标网络的可能影响。 基于各种评估指标在几个真实网络上的实验结果表明,所提出的方法优于一些经典和最近提出的影响最大化方法。

1.Introduction

形式上,影响力最大化的任务可以表述为“给定一个建模为图G和非负小数k的复杂网络,找到一组由k个种子节点组成的集合S,这样通过初始激活它们,可以在一定的信息扩散模型下使整体影响力传播规模最大化”。
在这里插入图片描述
网络的巨大规模和复杂复杂性往往会导致在网络上执行任何有意义和有效的任务的巨大计算成本。图嵌入是一种将网络节点的经典表示转换为低维向量空间的技术,可以有效地用于各种网络分析任务。另一方面,图神经网络(GNN)通过消息传递机制优化局部和全局目标函数,对节点特征进行处理,以获得每个节点的新特征向量。 影响最大化领域的大多数现有工作都致力于使用网络的结构特征来确定网络节点的相对得分,以区分网络中节点的可能影响能力。
我们提出了一种新的方法来解决影响最大化问题,将其视为一个伪回归任务。 利用网络中节点的结构身份的思想,我们的模型在算法的初始阶段使用struc2vec节点嵌入来为网络中的每个节点生成嵌入。这些节点嵌入然后充当网络中节点的特征向量。 然后,我们开发了图神经网络(GNN)的消息传递系统。从struc2vec生成的节点嵌入被传递到基于GNN的回归器上。 我们使用SIR信息扩散模型[9,10]计算训练网络中每个节点的影响。在训练模型时,计算出的影响形成了回归任务的标签。然后使用训练的模型来预测使用回归对测试网络的可能影响。最后,我们根据预测的影响选择前k个节点,从而选择大小为k的种子集。 在几种合成和现实网络的易感感染恢复(SIR)扩散模型和独立级联(IC)模型下,将我们提出的工作SGNN的性能与当代影响最大化的几种算法进行了比较。实验结果表明,所提出的方法通过优化识别网络中有影响力的节点,在影响力最大化方面提供了比当代几种方法更好的结果。我们工作的主要贡献如下。

  1. 我们提出了一种新的影响最大化方法,称为SGNN,使用Struct2vec嵌入和基于图神经网络(GNN)的回归器。
  2. 我们将影响最大化问题解释为伪回归任务,以便可以将几种深度学习和机器学习技术用于该任务。
  3. 我们使用LSTM单元作为模型的GNN段的邻域聚合器函数。我们试图优化回归段的计算影响和预测影响之间的误差。
  4. 我们在几个合成和现实网络上进行了深入的实验,这些实验揭示了与其他影响最大化算法相比,我们的模型具有值得称赞的性能。

2. Related Work

在本节中,我们讨论了复杂网络中影响最大化领域已有的研究工作。近年来,社会网络分析领域中的影响力最大化问题得到了广泛的研究。**基于中心性的算法是对节点传播能力进行排名的常用方法。**这种方法通过利用网络的拓扑结构为每个节点分配分数,并选择具有高分值的节点作为种子节点。
度中心性[14]估计节点的局部重要性,并将分数分配给每个节点,该分数等于该节点的直接邻居的数量。
Betweenness Centrality[14]基于通过特定节点的每对节点之间的最短路径的分数来确定节点的重要性。 根据贴近度中心性,如果一个节点与所有其他节点的路径距离最短,则该节点更具相关性[15]。通常,与外围节点相比,位于网络核心的节点对传播影响的贡献更大,基于这一假设,Kitsak等人[16]提出了K-shell中心性。它修剪从外围开始到内部外壳的节点,并将Kshell值按级别分配给每个节点。K-shell中心性的一个主要缺陷包括将相同的分数分配给存在于同一shell中的所有节点。 为了改进这一点,Bae等人[17]通过添加邻居的K-shell值,提出了邻居核心性(NC)中心性,从而能够区分位于同一K-shell中的顶点的扩展能力。利用投票过程的概念引入了一些寻找有影响力节点的技术[18,19]。在每一轮中,每个节点都向其邻居提供投票,获得最高投票的节点被选为该轮中的传播者。
文献中存在许多用于IM问题的基于贪婪的算法[8,20,21],它们利用独立级联(IC)模型的子模性和单调性以及蒙特卡罗模拟来改善影响扩散。通常,基于贪婪的算法比基于节点中心性的方法产生更好的结果,但由于许多蒙特卡罗模拟,具有较高的时间复杂性。影响最大化问题是次模问题,是Kempe等人[8]使用贪婪方法证明的NP难问题。Leskovec等人[20]提出了一种改进且高效的基于贪婪的算法,称为CELF,通过在选择种子时利用基于 “贪婪向前” 优化的子模性。CELF的计算成本效益往往是基于贪婪的框架的700倍。 他们 采用了幂律原理的思想,并假设社交网络中的大多数节点具有非常小的影响,因此可以在随后的迭代中很容易地进行修剪。它建立在各种现实世界网络表现出亚模特性的基础上,并致力于利用网络的这种特性来提出一种可扩展的贪婪算法。Goyal等人[21]提出了CELF++,这是对CELF算法的改进,通过利用影响传播模型的扩散函数的子模特性来避免蒙特卡洛模拟的不必要的重新计算。 近年来,文献中引入了许多基于混合的影响力最大化方法。Berahmand等人[22]提出了DCL算法,该算法考虑了节点的位置参数,如邻居的程度、邻居之间的公共链路以及反向聚类系数。Salavati等人[23]提出了GLR算法,该算法使用节点的局部网络结构来改进贴近度中心性计算,然后使用这些信息根据节点可能的影响对节点进行评分。Wen等人[24]提出了一种通过考虑中心节点(i)周围的局部结构特性,使用局部信息维度(LID)来识别有影响力的传播者的方法。这种方法通过香农熵来测量盒子中节点的信息。中心节点(i)周围的框l的大小从1到ceil不等(di=2),其中di是中心节点的程度。盒子大小变化的目标表明,该方法专注于中心节点的准局部结构,降低了时间复杂度。Rui等人[25]提出了RNR算法,该算法利用了节点的反向排名信息和节点的邻居对节点的影响。

最近,影响力最大化的问题也已经通过深度学习技术得到了解决。Li等人[26]使用网络嵌入和深度强化学习来解决影响最大化问题,并取得了改进的结果。 Panagopoulos等人[27]提出了IMINFECTOR,它使用扩散级联的日志来嵌入扩散概率,然后使用这些概率来使用贪婪方法找到种子集。Tian等人[28]利用元学习解决了话题软件影响力最大化问题。他们提出了一个基于独立级联和基于线性阈值的模型的深度影响评估模型。 Yu等人[29]提出了一种基于图卷积网络(RCNN)的方法来解决影响最大化问题。他们为每个节点生成一个特征矩阵,并使用卷积神经网络来训练和预测节点的影响。他们使用Barabasi-Albert(BA)模型对模型进行了预训练,因为大多数真实世界的网络都可以使用BA模型进行建模。 这形成了我们选择BA模型来训练我们提出的迁移学习模型的基础。选择这样一个庞大的网络的目的是获得模型参数的更好的泛化。

3. Preliminaries

3.1 Graph or Network Embedding

将网络的节点表示到低维向量空间中,同时保留网络的结构和拓扑特征是一种启发式方法[30]。节点的这种矢量表示提高了执行各种网络分析任务(如影响最大化)的计算可行性。多年来,人们提出了许多节点嵌入方法,如基于拉普拉斯本征映射[31]的节点嵌入、HOPE[32]、node2vec[33]、SDNE[34]等。这些节点嵌入考虑了网络结构的第一、第二和更高阶逼近性,以更好地捕捉节点的属性和网络的固有动态。Struct2vec[35]是一种图嵌入类型,它专注于图节点的结构同一性。它在向量空间中生成嵌入,其中具有相似结构连接性和方向的节点放置得更近。 **它可以识别结构,而不考虑节点和边标签或属性。**它还通过识别图的不同组件中的相似节点来处理未连接的图。它系统地发展了一个结构层次,以获得局部和全局层面的相似性。struc2vec还为网络中的节点生成随机上下文。这些是具有类似结构的节点序列,如通过网络上的加权随机行走所观察到的。语言模型可以进一步利用这一点来学习网络中节点的潜在表示。

3.2 Graph Neural Network (GNN)

图神经网络[12]是先进的深度学习模型,通过网络节点之间的消息传递技术利用节点的连接。由于邻域聚合特性,GNN改进了基本神经网络模型,该特性在每次迭代中以任意深度从邻域收集信息。总体而言,GNN倾向于通过局部聚合器函数从其邻域子图中获得节点的信息,同时生成全局聚合器函数的值。GNN基于节点的连接性和网络中的相对定位,为每个节点呈现一种经过处理的属性形式。这些属性被更新,旨在优化与网络相关联的损失函数。

3.3. Information Diffusion Models

本节介绍了本工作中使用的各种信息扩散模型。一般来说,信息扩散模型是可以对信息在网络中的传播进行建模的数学模型[36]。本文使用的信息扩散模型有:易感感染恢复(SIR)模型和独立级联(IC)模型。

  1. SIR信息扩散模型:SIR模型是一个被广泛研究的流行病学模型。它主要用于计算特定时期内人群中感染传染病的人数,并预测疾病的升级。SIR模型还用于分析谣言、信息和生物疾病等多种传播过程。整个种群可以分为易感个体、感染个体和康复个体,因此,该模型中的每个节点都由三个离散状态组成。第一种状态是易感状态S(t),表示尚未受到影响的易感人群的数量。第二种和第三种状态是分别由I(t)和R(t)表示的感染状态和恢复状态。 最初,除了少数名为传播节点的节点处于感染状态外,所有节点都处于易感状态。感染者可以将疾病传播给易感者,而康复者不会再次受到影响。 传播系数β在易感个体和受感染个体之间,γ 表示受感染个体的康复率。** 受感染的节点以β 的概率将疾病传播给易感的邻居,然后以γ的概率进入康复状态。**该模型基于这样的假设,即一旦康复,个体对疾病具有免疫力,不会再次感染。**F(t)是在时间t感染的节点和恢复的节点的总和,它可以用来评估当时最初感染的节点的影响。随着时间t的增加;F(t)也会增加,并在结束时变得稳定。此过程重复进行,直到网络中没有受感染的节点为止。
  2. 独立级联模型:IC模型是一种信息扩散模型,其中每个边缘都与感染概率相关联。这种概率是根据地理位置、相互作用的频率或历史感染痕迹来分配的。在这个模型中,信息流通过网络上的级联发生,每个节点要么处于活动状态,要么处于非活动状态处于活动状态的节点表示扩散中的信息已经影响了节点,而如果节点不知道该信息或该信息没有影响该节点,则该节点处于非活动状态。 最初,只有一些名为spreader节点的节点接收信息并变为活动节点。这些活动节点可以基于对应于该边缘的传播概率在下一离散步骤中影响非活动邻居。无论成功与否,节点只有一次激活特定非活动邻居的机会,永远不会有另一次机会。假设,如果G是一个给定的网络,并且p是一个描述扩展概率的常数,那么在时间t;p是活动节点v感染其非活动邻居u的概率。如果v成功,则节点u将在时间tþ1变为活动节点。在其他情况下,如果u的邻居数量大于1,则没有v试图感染其邻居的特定顺序,并且该过程将继续,直到没有节点被激活为止。

4. Proposed Work

在本节中,我们将详细介绍我们提出的影响力最大化方法。影响最大化问题中的一个重要活动是根据通过合适的方法计算的节点的可能影响对节点进行排序。 这些可能的影响形成了一组连续的值。因此,我们将影响最大化问题解释为预测一组连续的值的任务,这些值形成了基于特定节点特征的伪回归活动。 节点特征应保留网络中节点的结构身份及其拓扑特征。为了提取和处理这些节点特征,我们利用struc2vec节点嵌入为网络的每个节点生成合适维度的特征向量。这简化了要在网络上执行的各种机器学习和深度学习任务的适用性。生成的节点嵌入由GNN架构进一步处理。 然后将这些处理后的嵌入传递到回归器上,用于预测网络中节点实现的最终影响扩散。 我们的算法的基本功能是在训练网络上训练所提出的基于GNN的模型以获得模型参数,然后在目标网络上使用该训练模型来执行影响最大化。通过计算信息扩散模型下训练网络的节点的个体影响来生成训练模型所需的标签。图1显示了我们提出的工作的总体模型架构,它描述了所提出的方法如何作为端到端框架来预测网络中节点的可能影响。将网络作为模型的输入进行馈送。然后,该模型使用struc2vec嵌入为网络中的节点生成嵌入。然后,GNN的消息传递和邻域聚合机制对这些嵌入进行进一步处理。然后将GNN生成的输出输入到回归器中,以对网络中的节点进行可能的影响预测。然后基于节点的预测影响对节点进行排名,从而评估各种性能度量。
在这里插入图片描述

4.1. Label Generation

在我们的研究中,我们将影响最大化问题解释为一个伪回归问题。然而,对于任何回归任务,我们都需要一组定义良好且连续的标签。按照这些思路,我们还需要标签来回归网络特征进行训练。我们利用Barabasi-Albert(BA)[11]合成网络的几种变体作为训练网络,用于训练我们的模型以实现影响最大化任务。选择BA网络的不同复杂性的目的是更好地理解我们的SGNN模型在影响力最大化方面的性能能力。 为了发展伪回归任务的思想,我们在SIR信息扩散模型下计算训练网络中每个节点的影响。这个计算的影响形成了用于训练回归任务的SGNN模型的标签。 对于所选择的信息扩散模型(IDM),标签集(label)表示图(G)中每个节点的计算影响,可以表示如下。
在这里插入图片描述

4.2. Feature Generation using struc2vec Embedding

大多数现实生活中的网络,如在线社交网络,都在不断发展,规模巨大,往往难以处理和分析。一些网络还关联特定的节点属性,但并非所有网络都是这样。为了解决这个困难,我们使用节点嵌入技术为每个网络生成节点属性。因此,我们的目标是提供一个通用的影响力最大化框架,利用网络结构来生成网络中节点的特征。作为这项工作的一部分,我们采用了一种基于struc2vec节点嵌入的方法来为网络中的每个节点生成低维向量。这些向量的维数被选择为128,以更好地捕捉网络细节,同时降低处理网络的计算成本。 在网络节点上使用struc2vec进行特征生成后,我们为网络中的每个节点获得大小为128的特征向量。设S是使用具有维度d的struc2vec为图G生成的节点嵌入。我们获得如下嵌入。
在这里插入图片描述

4.3. Feature Processing using GNN

在这一步中,我们将讨论使用神经图网络(GNN)的特征处理。GNN是基于人工神经网络的模型,使用图的节点之间的消息传递和邻域聚合来捕获图信息。它有助于以任意深度表示来自节点邻域的信息,定义从该节点到形成邻域的跳数。 struc2vec捕获的网络细节通过GNN架构得到了进一步的扩充和增强。这有助于更好地举例说明网络节点的结构细节。GNN中的聚合器函数可以是参数的,也可以是非参数的。 在我们的研究中,我们考虑了参数聚合器函数,因为它通过不断更新学习参数的值来获得更好的结果,从而更深入地捕捉网络的复杂结构。GNN生成表示网络中每个节点v的特征的最终状态向量,如下所示。
在这里插入图片描述
h(v)是节点v生成的最终状态向量;s(v)是上一步中节点v生成的嵌入,hne(v)是v的邻居的状态向量;sne(v)是节点v的邻居的嵌入;
GNN的邻域聚合函数由f表示,f也被称为局部转移函数。我们使用长短期记忆(LSTM)细胞作为本研究的聚集器功能。选择LSTM细胞是因为它们是对经典递归神经网络的进步,该网络在更新模型参数的同时,对消失梯度起到很好的作用。 设H是通过根据等式3堆叠所有状态而获得的向量。S是网络中所有节点的堆叠嵌入。因此,我们可以将方程5表示为如下的紧凑形式。
在这里插入图片描述
其中F是全局转移函数,并且是图中所有节点的F的堆叠版本,而H是等式6的不动点。所采用的GNN根据以下等式更新状态向量。
在这里插入图片描述
其中Hi表示H(堆叠在一起的所有节点的最终状态向量)的第i次迭代。

4.4. Final Influence Spread Prediction using a Regressor

通常,回归器用于输入数据点的一组特征,并生成一组连续的值作为输出,同时优化损失函数。回归器是所提出的SGNN架构的一部分,用于预测网络中可能的影响。 由GNN在前一步骤4.3中产生的最终特征向量被馈送到回归器中。回归器使用均方误差(MSE)作为损失函数来优化训练阶段的模型行为。一旦经过训练,整个模型就用于预测目标网络中节点的可能影响。回归器的工作是将影响预测作为一组连续值。 然后,基于节点的预测影响来排列节点。排序排列中的前k个节点形成了启动信息传播所需的种子节点集,其目的是最大限度地扩大影响传播。设Infv是节点v的预测影响。它可以表示如下。
在这里插入图片描述
这里,o是回归函数,也称为局部输出函数,b是回归参数集。设INF是通过堆叠网络中所有节点的所有预测Infv而构建的向量。从形式上讲,它可以表示如下。
在这里插入图片描述
其中O是全局输出函数,并且是图中所有节点的O的堆叠版本。损失函数可以公式化为
在这里插入图片描述
其中Calcv是节点v的计算影响。所提出的算法试图使用梯度下降方法来减少损失值。根据损失函数来计算聚合器函数F的权重W的梯度。根据所计算的梯度来更新聚合器函数F的权重W。对于作为权重向量W的第i个分量的Wi,使用以下方程来完成。
在这里插入图片描述
这里,SGNN在训练网络Gtrain上训练SGNN模型,并返回经过训练的模型训练的SGNN。训练的SGNN为测试网络中的每个节点生成一组预测影响,Gtest表示为预测影响。trained_SGNN生成通过选择由具有最高预测影响的节点构成的初始种子集大小k而获得的最终感染量表。

4.5. Parametric Analysis

由于我们通过在一个网络上训练SGNN和在完全不同的网络上进行预测来进行影响预测。因此,我们进行参数分析以确定最佳训练网络。为此,我们在BA模型下创建了两组网络,分别用于训练和测试的DTrain和DTest,如第5节所示。通过在不同的训练网络上对SGNN进行训练,对其性能进行如下评估。
在这里插入图片描述
在这里插入图片描述

4.6. Algorithms

作为我们研究的一部分,我们提出了两种算法来逐步说明我们的工作。我们的工作依赖于在训练网络上学习模型参数,然后使用这些学习的参数对目标网络进行影响预测。因此,我们提出了两种算法,一种用于训练,另一种用于预测目标网络。因此,我们提出了两种算法,一种用于训练,另一种用于对目标网络进行预测。算法1描述了训练所提出的SGNN模型以实现影响力最大化的过程。 算法1以一组训练网络(Dtrain)、一组测试网络(Dtest)、嵌入维度d和信息扩散模型(IDM)、聚合函数(f)和输出函数(o)作为输入。该算法返回最优训练网络来训练模型(Opt-train),以及在最优训练网络上训练的SGNN模型(SGNNopt)。SGNNopt是用于对目标网络进行最终影响预测的模型。
在这里插入图片描述

算法1的简要描述如下。
(i)步骤1:该步骤涵盖算法1的第1行至第4行。在这一步中,我们对训练网络集合Dtrain中存在的所有训练网络进行迭代。我们分别使用等式3和2为第i个训练网络中的每个节点生成维度d和标签的struc2vec嵌入。之后,我们使用等式13为第i个训练网络训练SGNN架构。
(ii)步骤2: 在该步骤中,我们对测试网络集Dtest中存在的网络进行迭代。使用等式3为第j个测试网络中的每个节点生成维度为d的struc2vec嵌入。最后,我们将第i个训练网络和第j个测试网络的最终实现的扩展初始化为零。此步骤涵盖算法1的第5行至第7行。
(iii)步骤3: 该步骤描述算法1的行号8至13。在这一步中,我们计算了当模型在第i个训练网络上训练并且使用等式在第j个测试网络上测试时,由我们的模型选择的一组种子节点所实现的扩散。种子组的大小在10到50之间变化,每个步长为5。
(iv)步骤4: 基于上一步中节点实现的各种扩散值,我们使用等式17选择最优训练网络Opt-Train。这个步骤说明了我们算法的第14行。
(v)步骤5:本步骤涵盖了第15至17行。我们分别使用等式3和2为最优训练网络Opt-Train中的每个节点生成维度d和标签的struc2vec嵌入。然后,我们使用等式13为最优训练网络Opt-train训练我们的SGNN架构。最后,我们返回这个训练模型SGNNopt和最优训练网络Opt-Train。
在这里插入图片描述
在最优训练网络上训练模型后,我们继续对目标网络进行影响预测。这种启发式方法用Algorithm2表示。它将经过训练的SGNNopt模型、目标网络、要实现影响最大化的Gtarget、嵌入维度(d)和种子集大小k作为输入。根据算法2,我们首先为大小为(d)的目标网络生成嵌入。然后我们预测网络中每个节点的个体影响。然后按预测影响的降序对节点进行排序,并从这组节点中选择顶部(k)个节点。这形成了大小为k的节点(S)的种子集。然后,我们基于生成的种子集来评估各种性能度量。算法2最终返回种子集或有影响力的散布器(S)和评估的度量。算法2的逐行简要描述如下
在这里插入图片描述

5. Datasets and Evaluation Metrics

本节介绍了我们选择的各种网络和评估指标,以验证我们提出的模型SGNN的性能。

5.1. Datasets

由于,根据所提出的模型的工作,我们必须首先在用于回归任务的训练网络上训练模型。经过训练的模型有助于对测试网络进行影响预测。因此,我们选择了两种类型的数据集进行研究,即训练数据集和测试数据集。
训练数据集: 为了训练网络,我们使用基于Barabasi-Albert(BA)模型的合成网络[11]。选择BA网络是指可以在BA模型上对各种现实生活中的网络进行建模。此外,网络通过以BA网络的优先连接方式向节点添加边来增长,类似于真实世界网络的增长方式。但为了更好地理解SGNN与训练网络的性能兼容性,我们尝试了几种不同复杂度和维度的BA网络。然后,我们根据预测性能和计算成本选择最优化的训练网络。根据训练网络,我们选择了六个网络。训练网络表示为Train_n_k:由BA模型生成的无标度网络,具有n个节点,平均度为k。n取1000和3000两个值,而k取2、4和8三个值。因此,我们总共有六个培训网络。
测试数据集: 我们选择了六个基于BA模型的合成网络和八个现实生活中的社交网络作为训练数据集的一部分。使用合成网络来测试改变训练网络的节点大小和平均程度对SGNN性能的影响。而现实生活中的网络被用来将SGNN的性能与当代的一些算法进行比较。所使用的合成网络表示为Test_n_k:BA模型生成的无标度网络,具有n个节点,平均度为k。n取2000和4000两个值,而k取2、4和8三个值。
在这里插入图片描述

6. Experimental Results and Analysis

本节介绍了我们提出的模型的实验设置和结果,并将其性能与当代的一些影响最大化方法进行了比较。我们的方法依赖于预先训练基于GNN的模型,然后使用这个训练的模型来预测每个节点在目标网络中的可能影响。基于GNN的模型的训练是至关重要的一步,我们还进行了参数分析,以选择用于训练目的的最优网络。对使用Barabasi-Albert(BA)模型生成的六个合成网络进行了参数分析。我们通过在第5节中提到的八个不同复杂性、维度和多样性的真实网络上进行实验,研究了我们提出的模型的性能。将获得的结果与当代的一些影响最大化算法进行比较,即度和聚类系数与位置(DCL)[22]、局部信息维度(LID)[24]、反向节点排名(RNR)[25]、GLR[23]和RCNN[29]。对于每个数据集,我们在信息扩散的易感感染恢复(SIR)、独立级联(IC)模型下,获得了第5.2节中提到的所有评估标准的各种考虑算法的结果。由于SIR模型采用节点的种子集、感染概率b和恢复概率c作为输入参数。感染概率,即节点被感染的概率,被设置为0.1,以保持我们在网络中分析的一致性。恢复概率,即受感染节点被恢复的可能性,被设置为1。这意味着一旦一个节点 被感染,然后在下一次迭代中,它试图感染它的邻居,然后自我恢复。对于IC模型,我们选择传播概率p为0.1。由于这两个模型本质上都是随机的,我们对所有实验进行了100次,并对结果进行平均,以获得更普遍的结果。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值