指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。
首先用二维数组来存储这个图, 如下:
我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下。
比如我们设俩个集合 S , U, 分别代表确定值和估计值
那么一开始:
S = {1 };
U = {2,3 ,4,5,6};
先找一个离1号顶点最近的顶点,是2号顶点,当选择了2号顶点后,dis[2]的值就已经 从“估计值”变为了“确定值”。
S= {1, 2};
U = {3 , 4 , 5 ,6 };
接下来看2号顶点的出边,有2-3和2-4两条边。先讨论通过2-3能否让1-3号的路程变短,也就是比较dis[3]和dis[2]+e[2][3]的大小。(松弛操作)。
松弛操作其实就是指通过另外一个点作为中转点,更新这俩点之间的距离。
最终结果:S= {1 ,2 ,4 ,3, 5 ,6} // 最短路径
U = {};
下面代码(超级详细):
#include <stdio.h>
int main()
{
int dis[10] ;//存储源点到其他顶点之间的最短距离
int e[10][10] ;//存图存边
int book[10];//标记确定的值
int n , m ,t1 , t2 , t3, u , min;
int INF = 999999;//无穷值
scanf("%d %d", &n, &m);//n表示顶点数, m表示边的条数
//初始化
for(int i = 1 ; i <= n ; i++)
{
for(int j = 1 ; j <= n ; j++)
{
if(i == j)
{
e[i][j] = 0;
}
else
{
e[i][j] = INF;
}
}
}
//读入边
for(int i =1 ; i <= m ; i++)
{
scanf("%d %d %d" , &t1 ,&t2 , &t3);
e[t1][t2] = t3;
}
//初始化dis数组 , 源点到其他顶点的初始路程 ,可直接到达就直接写该距离 , 不能就初始为INF
for(int i = 1 ; i <= n ; i++)
{
dis[i] = e[1][i];
}
//初始化book数组
for(int i = 1; i <= n ;i++)
{
book[i] = 0;
book[1] = 1;
}
//当当当~~~~ 重点来了 , 迪杰斯特拉算法核心语句
for(int i = 1 ; i <= n-1 ; i++)//循环dis数组 , 找最近的点
{
min = INF;
for(int j = 1 ; j <= n ; j++)//
{
if(book[j] == 0 && dis[j] < min)
{
min = dis[j];//确定最短路径通过的顶点
u = j;
}
}
book[u] = 1;//该点确定
for(int v = 1 ; v <= n ; v++)//松弛操作
{
if(e[u][v] < INF)
{
if(dis[v] >dis[u] +e[u][v])
{
dis[v] = dis[u] + e[u][v];
}
}
}
}
for(int i = 1 ; i <= n ; i++)
{
printf("%d " , dis[i]);
}
return 0;
}
/*
6 9
1 2 1
1 3 12
2 3 9
2 4 3
3 5 5
4 3 4
4 5 13
4 6 15
5 6 4
*/