数字图像处理(十二)最大熵算法


前言

在图像分析中,通常需要将所关心的目标从图像中提取出来,这种从图像中某个特定区域与其他部分进行分离并提取出来的处理,就是图像分割。所以图像分割处理实际上就是区分图像中的“前景目标”和“背景”,所以通常又称之为图像的二值处理。之前我们已经介绍过基于图像灰度分布的阈值方法大津二值化算法。今天我们再介绍一种二值化算法:最大熵方法。

一、熵是什么?

  是信息论中对不确定性的度量,是对数据中所包含信息量大小的度量。熵取最大值时,就表明获得的信息量最大。
信息量:信息量有大有小。比如太阳从东边升起,这是一个确定的事件,没有一点信息量;比如说某人买了一张彩票,有99%的概率会中奖,那这个事情信息量就很大,因为本来概率很小很小的事情变得很确定了。

1.信息量如何计算?

  一个事件的信息量就是这个事件发生的概率的负对数。
例如,符号 x x x出现的概率为 p ( x ) p(x) p(x),则符号 x x x的自信息量 I I I I = − l o g p ( x ) I=-logp(x) I=logp(x)

2.熵如何计算?

  假设符号集有 n n n个符号,每个符号出现的概率为 p ( x i ) p(x_i) p(xi),则符号集的信息熵为 H = − ∑ i = 1 n p ( x i ) l o g p ( x i ) H=-\sum_{i=1}^np(x_i)logp(x_i) H=i=1np(xi)logp(xi)
可以得到一个结论: p ( x 1 ) = p ( x 2 ) = ⋯ = p ( x n ) p(x_1)=p(x_2)=\cdots=p(x_n) p(x1)=p(x2)==p(xn)时熵取最大值。

二、最大熵方法

1.设计思想

最大熵方法的设计思想是:选择适当的阈值将图像分为两类,两类的平均熵之和最大时,可以从图像中获得最大信息量,以此来确定最佳阈值。

2.算法步骤

  1. 求出图像中的所有像素的分布概率 p 0 , p 1 , ⋯   , p 255 p_0,p_1,\cdots,p_{255} p0,p1,,p255(图像的灰度分布范围为[0,255]) p i = N i N i m a g e p_i=\frac{N_i}{N_{image}} pi=NimageNi其中, N i N_i Ni为灰度值为 i i i的像素个数; N i m a g e N_{image} Nimage为图像的总像素数;
  2. 给定一个初始阈值 T h = T h 0 Th=Th_0 Th=Th0 T h ∈ [ 0 , 255 ] Th\in[0,255] Th[0,255];将图像分为 C 1 C_1 C1 C 2 C_2 C2两类;
  3. 分别计算两个类的平均相对熵 E 1 = − ∑ i = 0 T h ( p i / p T h ) ⋅ l n ( p i / p T h ) E_1=-\sum_{i=0}^{Th}(p_i/p_{Th})\cdot ln(p_i/p_{Th}) E1=i=0Th(pi/pTh)ln(pi/pTh) E 2 = − ∑ i = T h + 1 255 ( p i / ( 1 − p T h ) ) ⋅ l n ( p i / ( 1 − p T h ) ) E_2=-\sum_{i=Th+1}^{255}(pi/(1-p_{Th}))\cdot ln(p_i/(1-p_{Th})) E2=i=Th+1255(pi/(1pTh))ln(pi/(1pTh))其中 p T h = ∑ i = 0 T h p i p_{Th}=\sum_{i=0}^{Th}p_i pTh=i=0Thpi
  4. E 1 + E 2 E_1+E_2 E1+E2之和为最大值时,此时的 T h Th Th为最佳阈值 T h ∗ Th^* Th,此时满足图像中的信息量最大。

3.C++代码

/* 最大熵算法 */
int main()
{
    cv::Mat image = cv::imread("Lena.bmp");
    cv::Mat gray_image = cv::Mat::zeros(image.size(), CV_8UC1);
    cv::cvtColor(image, gray_image, cv::COLOR_BGR2GRAY);

    int height = gray_image.rows;
    int width = gray_image.cols;

    // 计算像素分布概率
    float p[256] = { 0 };
    for (int row = 0; row < height; row++)
    {
        for (int col = 0; col < width; col++)
        {
            p[gray_image.at<uchar>(row, col)] = p[gray_image.at<uchar>(row, col)] + 1;
        }
    }
    for (int i = 0; i < 256; i++)
    {
        p[i] = p[i] / (height*width);
    }
    //保存E_1+E_2
    float E[256] = { 0.0 };

    //遍历所有的像素值
    int index = 0; //最大值的索引
    for (int th = 0; th < 256; th++)
    {
        // 计算p_Th
        float p_Th = 0.0;
        for (int i = 0; i < th+1; i++)
        {
            p_Th += p[i];
        }

        // 计算E_1
        float E_1 = 0.0, E_2 = 0.0;

        for (int i = 0; i < th + 1; i++)
        {
            if (fabs(p_Th) < 1e-6)
            {
                E_1 = 0;
            }
            else
            {
                E_1 += -(p[i] / p_Th) * log(p[i] / p_Th + 1e-6);
            }
            
        }
        for (int j = th + 1; j < 256; j++)
        {
            if (fabs(1 - p_Th) < 1e-6)
            {
                E_2 = 0;
            }
            else
            {
                E_2 += -(p[j] / (1 - p_Th))*log(p[j] / (1 - p_Th)+1e-6);
            }
        }
        if ((E_1 + E_2) > E[index])
        {
            index = th;
        }
        E[th] = E_1+E_2;
    }

    // 进行二值化
    cv::Mat output_image = cv::Mat::zeros(height, width, CV_8UC1);
    for (int row = 0; row < height; row++)
    {
        for (int col = 0; col < width; col++)
        {
            if (gray_image.at<uchar>(row, col) > index)
            {
                output_image.at<uchar>(row, col) = 255;
            }
            else
            {
                output_image.at<uchar>(row, col) = 0;
            }
        }
    }
    cv::imshow("input-image", gray_image);
    cv::imshow("output-image", output_image);
    cv::waitKey(0);
    return 0;
}

关于代码的几点说明:

  1. 因为除数可能是0,所以要对p_Th进行为0判断。可以参考C++ float、double判断是否等于0,1-p_Th同理。
  2. 因为log()函数括号内可能取到0,从而出现负无穷的情况,所以加上一个很小的整数1e-6,避免出现负无穷的情况。

4.实验结果

在这里插入图片描述

参考资料

1.数字图像处理基础.朱虹.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值