RVEA算法

文章介绍了RVEA(ReferenceVectorGuidedEvolutionaryAlgorithm)算法,这是一种用于多目标优化的进化算法。它涉及到目标函数的最小化,预备知识如参考向量个数的计算,以及如何更新参考向量。代码示例展示了RVEA在DTLZ1问题上的应用,包括种群划分、参考向量选择和更新过程。整个流程包括参考向量指导选择和更新,参数如fr、alpha和t_max有特定设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 目标函数

min ⁡ X f ( X ) = ( f 1 ( X ) , f 2 ( X ) , . . . , f M ( X ) ) \min_{\small{X}} \pmb{f(\small{X})} = (f_1(\small{X}), f_2(\small{X}), ..., f_M(\small{X})) Xminf(X)=(f1(X),f2(X),...,fM(X))

2 预备知识

参考向量个数 N = C H + M − 1 M − 1 N = C_{H+M-1}^{M-1} N=CH+M1M1 H H H为边长分成的份数, M M M是目标的个数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XkhezIHc-1687679692188)(C:\Users\24220\AppData\Roaming\Typora\typora-user-images\image-20230615115213486.png)]

from pymoo.algorithms.moo.rvea import RVEA
from pymoo.optimize import minimize
from pymoo.problems import get_problem
from pymoo.util.ref_dirs import get_reference_directions
from pymoo.visualization.scatter import Scatter

problem = get_problem("dtlz1", n_obj=3)

ref_dirs = get_reference_directions("das-dennis", 3, n_partitions=12)

algorithm = RVEA(ref_dirs)

res = minimize(problem,
               algorithm,
               termination=('n_gen', 400),
               seed=1,
               verbose=False)

plot = Scatter()
plot.add(problem.pareto_front(ref_dirs), plot_type="surface", color="black", alpha=0.7)
plot.add(res.F, color="red")
plot.show(block=True)

此代码中 H = n _ p a r t i t i o n s = 12          M = n _ o b j = 3 H =n\_partitions = 12 \;\;\;\; M = n\_obj = 3 H=n_partitions=12M=n_obj=3

故最终的参考向量个数 N = C 12 + 3 − 1 3 − 1 = C 14 2 = 91 N = C_{12+3-1}^{3-1} = C_{14}^2 = 91 N=C12+3131=C142=91

每个参考向量需要单位化: v i = u i ∣ ∣ u i ∣ ∣ v_i=\frac{u_i}{ ||u_i||} vi=∣∣ui∣∣ui

参考向量的相似度 c o s θ = v 1 ∙ v 2 ∣ ∣ v 1 ∣ ∣ ∣ ∣ v 2 ∣ ∣ cos \theta = \frac{\pmb{v_1} \bullet\pmb{ v_2}}{||\pmb{v_1} ||||\pmb{v_2}||} cosθ=∣∣v1∣∣∣∣v2∣∣v1v2

3 参考向量引导选择

  • 理想向量: Z t m i n = ( Z t , 1 m i n , Z t , 2 m i n , . . . , Z t , m m i n ) \small{Z_t^{min}} = (\small{Z_{t, 1}^{min}}, \small{Z_{t, 2}^{min}}, ..., \small{Z_{t, m}^{min}}) Ztmin=(Zt,1min,Zt,2min,...,Zt,mmin)代表每个目标函数的最小值组成的向量

  • 目标向量平移:因为参考向量是以坐标系原点为中心的,因此需要将目标函数都平移到坐标系原点: f t , i ′ = f t , i − Z t m i n \text{f}_{t, i}^{\prime} = \text{f}_{t, i} - \small{Z_t^{min}} ft,i=ft,iZtmin f t , i \text{f}_{t, i} ft,i表示第 t t t次迭代中第 i i i个个体的目标函数向量

  • 种群划分:种群里面的每个个体按照到参考向量的最小夹角,与离得最近的目标向量归为一个集合体【与目标向量的余弦值最大】

c o s θ t , i , j = f t , i ′ ∙ v t , j ∣ ∣ f t , i ′ ∣ ∣ P ˉ t , k = { I t , i ∣ k = argmax i ∈ { 1 , 2 , . . . , N } c o s θ t , i , j } \begin{align} & cos \theta_{t, i, j} = \frac{\text{f}_{t, i}^{\prime} \bullet \pmb{v}_{t, j}}{||\text{f}_{t, i}^{\prime}||} \\ & \bar{P}_{t, k} = \{I_{t, i}|k = \underset{i \in \{1, 2, ..., N\}}{\text{argmax}} cos \theta_{t, i, j}\} \end{align} cosθt,i,j=∣∣ft,i∣∣ft,ivt,jPˉt,k={It,ik=i{1,2,...,N}argmaxcosθt,i,j}

  • 角度惩罚距离
    d t , i , j = ( 1 + P ( θ t , i , j ) ) ∙ ∣ ∣ f t , i ′ ∣ ∣ P ( θ t , i , j ) = M . ( t t m a x ) α . θ t , i , j γ v t , j γ v t , j = min ⁡ i ∈ { 1 , 2 , . . . , N } , i ≠ j < v t , i , v t , j >          最小角 \begin{align} d_{t, i, j} &= (1 + P(\theta_{t, i, j})) \bullet ||\text f_{t, i}^{\prime}|| \\ P(\theta_{t, i, j}) &= M . (\frac{t}{t_{max}}) ^\alpha . \frac{\theta_{t, i, j}}{\gamma_{\pmb v_{t, j}}} \\ \gamma_{\pmb v_{t, j}} &= \min_{i \in \{1, 2, ..., N\}, i \neq j} <\pmb v_{t, i}, \pmb v_{t, j}> \;\;\;\; \text{最小角} \end{align} dt,i,jP(θt,i,j)γvt,j=(1+P(θt,i,j))∣∣ft,i∣∣=M.(tmaxt)α.γvt,jθt,i,j=i{1,2,...,N},i=jmin<vt,i,vt,j>最小角

4 更新参考向量

v t + 1 , i = v 0 , i ∘ ( Z t + 1 m a x − Z t + 1 m i n ) ∣ ∣ v 0 , i ∘ ( Z t + 1 m a x − Z t + 1 m i n ) ∣ ∣ \pmb v_{t+1, i} = \frac{\pmb v_{0, i} \circ (\small Z_{t+1}^{max} - Z_{t+1}^{min})}{||\pmb v_{0, i} \circ (\small Z_{t+1}^{max} - Z_{t+1}^{min})||} vt+1,i=∣∣v0,i(Zt+1maxZt+1min)∣∣v0,i(Zt+1maxZt+1min)

5 流程

整体流程
![在这里插入图片描述](https://img-blog.csdnimg.cn/6f71e37498f445f7bfc5101d535c68f5.png

参考向量指导选择
在这里插入图片描述

更新参考向量
在这里插入图片描述

fr通常设置为 0.2 0.2 0.2

alpha通常设置为 2 2 2

t_max通常设置为 400 400 400

6 代码

import numpy as np
from matplotlib import pyplot as plt
from pymoo.util.ref_dirs import get_reference_directions
import geatpy as ea
from pymoo.visualization.scatter import Scatter

class DTLZ1(ea.Problem):  # 继承Problem父类
    def __init__(self, M=3, Dim=None):  # M : 目标维数;Dim : 决策变量维数
        name = 'DTLZ1'  # 初始化name(函数名称,可以随意设置)
        maxormins = [1] * M  # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)
        if Dim is None:
            Dim = M + 4  # 初始化Dim(决策变量维数)
        varTypes = np.array([0] * Dim)  # 初始化varTypes(决策变量的类型,0:实数;1:整数)
        lb = [0] * Dim  # 决策变量下界
        ub = [1] * Dim  # 决策变量上界
        lbin = [1] * Dim  # 决策变量下边界(0表示不包含该变量的下边界,1表示包含)
        ubin = [1] * Dim  # 决策变量上边界(0表示不包含该变量的上边界,1表示包含)
        # 调用父类构造方法完成实例化
        ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)

    def evalVars(self, Vars):  # 目标函数
        XM = Vars[:, (self.M - 1):]
        g = 100 * (self.Dim - self.M + 1 + np.sum(((XM - 0.5) ** 2 - np.cos(20 * np.pi * (XM - 0.5))), 1,
                                                  keepdims=True))
        ones_metrix = np.ones((Vars.shape[0], 1))
        f = 0.5 * np.hstack([np.fliplr(np.cumprod(Vars[:, :self.M - 1], 1)), ones_metrix]) * np.hstack(
            [ones_metrix, 1 - Vars[:, range(self.M - 2, -1, -1)]]) * (1 + g)
        return f


if __name__ == '__main__':
    M = 3  # 目标函数的个数
    ref_dirs0 = get_reference_directions("das-dennis", M, n_partitions=12)  # 初始化参考向量

    N = ref_dirs0.shape[0]  # 参考向量的大小
    dim = 7  # 决策变量的维度

    for i in range(ref_dirs0.shape[0]):
        ref_dirs0[i] = ref_dirs0[i] / np.linalg.norm(ref_dirs0[i])

    ref_dirs = np.copy(ref_dirs0)

    pop = np.random.random((100, dim))

    crossover = ea.Recsbx(XOVR=1, n=30)  # 交叉
    mutation = ea.Mutpolyn(Pm=1 / dim)  # 变异

    lb = np.array([0] * dim)
    ub = np.array([1] * dim)
    varsType = np.array([0] * dim)

    problem = DTLZ1()
    t_max = 400
    alpha = 2
    fr = 0.2
    for t in range(t_max):
        print(t)
        children = crossover.do(pop)
        children = mutation.do('RI', children, np.array([lb, ub, varsType]))

        pop = np.row_stack((pop, children))  # 合并种群
        ObjV = problem.evalVars(pop)  # 计算种群的目标值

        # ==================   参考向量指导选择  ==================
        z_min = np.min(ObjV, axis=0)  # 计算最优点

        # =======================    更新参考向量   ==============================
        if np.mod(t / t_max, fr) == 0:
            z_max = np.max(ObjV, axis=0)  # 计算最差点
            for j in range(N):
                ref_dirs[j] = np.multiply(ref_dirs0[j], z_max - z_min)
                ref_dirs[j] = ref_dirs[j] / np.linalg.norm(ref_dirs[j])
        # =======================    更新参考向量   ==============================

        ObjV_1 = ObjV - z_min   # 目标值转换到坐标轴
        pop_size = pop.shape[0]

        theta_set = np.full((pop_size, N), np.nan)  # 根据目标值与参考点之间的夹角,划分种群
        for i in range(pop_size):
            for j in range(N):
                cos_theta = ObjV_1[i].dot(ref_dirs[j]) / np.maximum(np.linalg.norm(ObjV_1[i]), 1e-64)
                theta_set[i, j] = np.arccos(cos_theta)

        partition = [[] for _ in range(N)]   # 划分为 N 个种群

        for i in range(pop_size):
            k = np.argmin(theta_set[i])
            partition[k].append(i)

        gamma = np.full((N, N), np.nan)  # 参考向量之间的夹角
        for i in range(N):
            for j in range(N):
                if i == j:
                    gamma[i, j] = np.pi
                    continue
                gamma[i, j] = np.arccos(ref_dirs[i].dot(ref_dirs[j]))

        gamma = np.min(gamma, axis=1)

        apd_partition = [[] for _ in range(N)]

        for j in range(N):  # 设置角度惩罚
            partiton_j = partition[j]
            for i in partiton_j:
                p_theta = M * np.power(t / t_max, alpha) * (theta_set[i, j] / gamma[j])
                apd = (1 + p_theta) * np.linalg.norm(ObjV_1[i])
                apd_partition[j].append(apd)
        # ==================   参考向量指导选择   =====================

        # ====================   精英选择   ========================
        survivor = []
        for j in range(N):
            partiton_j = partition[j]
            if not partiton_j:
                continue
            k = np.argmin(apd_partition[j])
            survivor.append(partiton_j[k])
        pop = pop[survivor]
        # ====================   精英选择   =======================

    ObjV = problem.evalVars(pop)
    print(ObjV.shape)
    
    plot = Scatter()
    plot.add(ObjV)
    plot.show()

7 运行效果

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值