通俗的AVL树的插入代码递归逻辑

简单分析

这个插入,是个递归的过程。插入肯定是往叶子结点的下面插,但要从根结点开始比。
关键是利用各结点的平衡因子BF(结点左子树高度减去右子树高度),在这分为【-1、0、1】三种可能。
先判断插入的位置,以插入元素的大小先确定分支,同时就能结合BF确定四种旋转类型【LL/LR/RR/RL】。
另外,旋转点的起始点【P】,也要留心。

LH(左边更高)1 ,EH(等高) 0,FH(右边更高)-1. 代码是《大话设计模式》的。

Status InsertAVL(BiTree *T, int e, Status *taller) {
	if (!*T) { /*  插入新结点,树“长高”,置taller为TRUE */
		*T = (BiTree)malloc(sizeof(BiTNode));
		(*T)->data = e; (*T)->lchild = (*T)->rchild = NULL; (*T)->bf = EH;
		*taller = TRUE;
	} else {
		if (e == (*T)->data) { /*  树中已存在和e有相同关键字的结点则不再插入 */
			*taller = FALSE; return FALSE;
		}
		if (e < (*T)->data) { /*  应继续在T的左子树中进行搜索 */
			if (!InsertAVL(&(*T)->lchild, e, taller)) /*  未插入 */
				return FALSE;
			if (*taller) /*   已插入到T的左子树中且左子树“长高” */
				switch ((*T)->bf) /*  检查T的平衡度 */
				{
				case LH: /*  原本左子树比右子树高,需要作左平衡处理 */
					LeftBalance(T);	*taller = FALSE; break;
				case EH: /*  原本左、右子树等高,现因左子树增高而使树增高 */
					(*T)->bf = LH; *taller = TRUE; break;
				case RH: /*  原本右子树比左子树高,现左、右子树等高 */
					(*T)->bf = EH; *taller = FALSE; break;
				}
		} else { /*  应继续在T的右子树中进行搜索 */
			if (!InsertAVL(&(*T)->rchild, e, taller)) /*  未插入 */
				return FALSE;
			if (*taller) /*  已插入到T的右子树且右子树“长高” */
				switch ((*T)->bf) /*  检查T的平衡度 */
				{
				case LH: /*  原本左子树比右子树高,现左、右子树等高 */
					(*T)->bf = EH; *taller = FALSE;	break;
				case EH: /*  原本左、右子树等高,现因右子树增高而使树增高  */
					(*T)->bf = RH; *taller = TRUE; break;
				case RH: /*  原本右子树比左子树高,需要作右平衡处理 */
					RightBalance(T); *taller = FALSE; break;
				}
		}
	}
	return TRUE;
}

用最简单的例子对递归过程分析:
插入:假设函数调用嵌套抵达叶子结点 :本层有结点,不执行if(!T),到下层,在下层是空,插入。回到本层,继续运行。长高了,[之前已经判断过外部进入条件,根据大小安排好了插入点]且已经决定了是哪边更高,所以直接进入BF的判断,用这层以前积累的BF 来判断–如何修正本层的BF和旋转。刚在下层新加结点,本层只能是BF:0->1且taller=TRUE,然后本层结束,去上层。上层里是真用以前积累的BF来判断 ,然后条件合适就开始旋转。
所以,插入后要用到的旋转起点,至少是插入点的爷爷结点
BF用的都是以前的老本。而根据插入数值大小,已经有过一次分支,内部判断就很粗暴了。
里面不会真的让BF超过绝对值1, BF绝对值1时,对应条件下直接旋转。

图示简单的情况

求简便,全插左边啦。
开始只有根结点,然后再左边插入一个结点,那么根结点会在第一层Insert函数里继续执行到case EH,根结点BF变成LH,即从0变成了1。
【变成1还是-1,是由判断插入点应该在左还是在右决定的】
然后在最左下插入,达到最简单的一种失衡。中间结点BF从0变成1,就像刚才的根结点一样。但现在还有一层Insert套在上面,就是根结点了。这里,0->1让taller为true,所以套在上面的这层,有关根结点的Insert函数,又进入了Switch之中,在第一次插入时,他已经积累了为1的BF,No More!要受不了了!那么这时候身处if左插分支的switch,决定让BF已经为LH的根结点,执行左平衡函数!这里LL的情况,左平衡只需要一个右旋。
在这里插入图片描述
然后来到了右旋函数里。

void R_Rotate(BiTree *P) {
	BiTree L;
	L = (*P)->lchild; /*  L指向P的左子树根结点 */
	(*P)->lchild = L->rchild; /*  L的右子树挂接为P的左子树 */
	L->rchild = (*P);
	*P = L; /*  P指向新的根结点 */
}

刚才受不了的是谁?是根结点。在这,叫受不了的那个结点为P,然后主要改动的关系就是P和它的左子(左旋就是右子),先获取L的右子,【因为在二叉搜索树里,右边的都比左边的大,所以拿右边,而且就算右子有一大堆后继,P也能全接受】,这次是获取了个寂寞。交接的前戏处理好了,开始干正事。L的右子指针直接连到原来他的双亲结点P上,完事。本来在L右边的,不管是右上的双亲,还是右下的孩子,数值都比L大,现在右边现在还是连着比自己大的,完全没问题。
在这里插入图片描述
这也是旋转点距离插入点最近的,能用来旋转的情况了–插入点的爷爷结点被旋转。


如果稍微平衡一点,这个旋转点的距离就远了。
下面按照标号的顺序插入,根结点的BF变化是这样。
插入4的时候,1从左高变成等高,传递了一个taller=False。0号点就不用调整。
在这里插入图片描述
然后是同样道理的旋转。
在这里插入图片描述
反正是从失衡的结点开始旋转啦。

代码

《大话数据结构》

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100 /* 存储空间初始分配量 */

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */


/* 二叉树的二叉链表结点结构定义 */
typedef  struct BiTNode	/* 结点结构 */
{
	int data;	/* 结点数据 */
	int bf; /*  结点的平衡因子 */
	struct BiTNode *lchild, *rchild;	/* 左右孩子指针 */
} BiTNode, *BiTree;


/* 对以p为根的二叉排序树作右旋处理, */
/* 处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点 */
void R_Rotate(BiTree *P) {
	BiTree L;
	L = (*P)->lchild; /*  L指向P的左子树根结点 */
	(*P)->lchild = L->rchild; /*  L的右子树挂接为P的左子树 */
	L->rchild = (*P);
	*P = L; /*  P指向新的根结点 */
}

/* 对以P为根的二叉排序树作左旋处理, */
/* 处理之后P指向新的树根结点,即旋转处理之前的右子树的根结点0  */
void L_Rotate(BiTree *P) {
	BiTree R;
	R = (*P)->rchild; /*  R指向P的右子树根结点 */
	(*P)->rchild = R->lchild; /* R的左子树挂接为P的右子树 */
	R->lchild = (*P);
	*P = R; /*  P指向新的根结点 */
}

#define LH +1 /*  左高 */ 
#define EH 0  /*  等高 */ 
#define RH -1 /*  右高 */ 

/*  对以指针T所指结点为根的二叉树作左平衡旋转处理 */
/*  本算法结束时,指针T指向新的根结点 */
void LeftBalance(BiTree *T) {
	BiTree L, Lr;
	L = (*T)->lchild; /*  L指向T的左子树根结点 */
	switch (L->bf) { /*  检查T的左子树的平衡度,并作相应平衡处理 */
	case LH: /*  新结点插入在T的左孩子的左子树上,要作单右旋处理 */
		(*T)->bf = L->bf = EH;
		R_Rotate(T);
		break;
	case RH: /*  新结点插入在T的左孩子的右子树上,要作双旋处理 */
		Lr = L->rchild; /*  Lr指向T的左孩子的右子树根 */
		switch (Lr->bf) { /*  修改T及其左孩子的平衡因子 */
		case LH: (*T)->bf = RH;
			L->bf = EH;
			break;
		case EH: (*T)->bf = L->bf = EH;
			break;
		case RH: (*T)->bf = EH;
			L->bf = LH;
			break;
		}
		Lr->bf = EH;
		L_Rotate(&(*T)->lchild); /*  对T的左子树作左旋平衡处理 */
		R_Rotate(T); /*  对T作右旋平衡处理 */
	}
}

/*  对以指针T所指结点为根的二叉树作右平衡旋转处理, */
/*  本算法结束时,指针T指向新的根结点 */
void RightBalance(BiTree *T) {
	BiTree R, Rl;
	R = (*T)->rchild; /*  R指向T的右子树根结点 */
	switch (R->bf) { /*  检查T的右子树的平衡度,并作相应平衡处理 */
	case RH: /*  新结点插入在T的右孩子的右子树上,要作单左旋处理 */
		(*T)->bf = R->bf = EH;
		L_Rotate(T);
		break;
	case LH: /*  新结点插入在T的右孩子的左子树上,要作双旋处理 */
		Rl = R->lchild; /*  Rl指向T的右孩子的左子树根 */
		switch (Rl->bf) { /*  修改T及其右孩子的平衡因子 */
		case RH: (*T)->bf = LH;
			R->bf = EH;
			break;
		case EH: (*T)->bf = R->bf = EH;
			break;
		case LH: (*T)->bf = EH;
			R->bf = RH;
			break;
		}
		Rl->bf = EH;
		R_Rotate(&(*T)->rchild); /*  对T的右子树作右旋平衡处理 */
		L_Rotate(T); /*  对T作左旋平衡处理 */
	}
}

/*  若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个 */
/*  数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 */
/*  失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。 */
Status InsertAVL(BiTree *T, int e, Status *taller) {
	if (!*T) { /*  插入新结点,树“长高”,置taller为TRUE */
		*T = (BiTree)malloc(sizeof(BiTNode));
		(*T)->data = e; (*T)->lchild = (*T)->rchild = NULL; (*T)->bf = EH;
		*taller = TRUE;
	} else {
		if (e == (*T)->data) { /*  树中已存在和e有相同关键字的结点则不再插入 */
			*taller = FALSE; return FALSE;
		}
		if (e < (*T)->data) { /*  应继续在T的左子树中进行搜索 */
			if (!InsertAVL(&(*T)->lchild, e, taller)) /*  未插入 */
				return FALSE;
			if (*taller) /*   已插入到T的左子树中且左子树“长高” */
				switch ((*T)->bf) /*  检查T的平衡度 */
				{
				case LH: /*  原本左子树比右子树高,需要作左平衡处理 */
					LeftBalance(T);	*taller = FALSE; break;
				case EH: /*  原本左、右子树等高,现因左子树增高而使树增高 */
					(*T)->bf = LH; *taller = TRUE; break;
				case RH: /*  原本右子树比左子树高,现左、右子树等高 */
					(*T)->bf = EH; *taller = FALSE; break;
				}
		} else { /*  应继续在T的右子树中进行搜索 */
			if (!InsertAVL(&(*T)->rchild, e, taller)) /*  未插入 */
				return FALSE;
			if (*taller) /*  已插入到T的右子树且右子树“长高” */
				switch ((*T)->bf) /*  检查T的平衡度 */
				{
				case LH: /*  原本左子树比右子树高,现左、右子树等高 */
					(*T)->bf = EH; *taller = FALSE;	break;
				case EH: /*  原本左、右子树等高,现因右子树增高而使树增高  */
					(*T)->bf = RH; *taller = TRUE; break;
				case RH: /*  原本右子树比左子树高,需要作右平衡处理 */
					RightBalance(T); *taller = FALSE; break;
				}
		}
	}
	return TRUE;
}

int main(void) {
	int i;
	int a[10] = { 3,2,1,4,5,6,7,10,9,8 };
	BiTree T = NULL;
	Status taller;
	for (i = 0; i < 10; i++) {
		InsertAVL(&T, a[i], &taller);
	}
	printf("本样例建议断点跟踪查看平衡二叉树结构");
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值