导读
电影,是一种结合视觉与听觉的现代艺术。如今,电影已不单是人们娱乐消遣的生活方式,也逐渐成为国家文化软实力的重要标志之一。据有关数据统计,2021年中国影视行业市场规模达2349亿元,同比增长23.2%,预计2020年至2025年的五年期复合年均增长率为5.0%,具备强大市场需求度。而国内影视行业政策注重内容端的输出,影视从业人员并未针对不同客群精准投放作品。
早在2014年,国外某影视平台就运用机器学习和个性化推荐算法技术,通过深度挖掘用户数据,打造影视个性化推荐系统。举个例子,假如有人邀请你看电影,那你的第一个问题一定是:什么电影?大部分情况下,我们可能会根据朋友推荐、热点票房、用户打分、标签类型来选择电影。那么这个时候出现一个朋友,基本在他推荐的电影里,总能命中喜好助你度过闲暇时光,即个性化推荐系统作用。艾媒咨询数据显示,在2021-2022年中国消费者偏好的不同形式影视作品中,74.5%消费者会选择电视剧,71.8%消费者会选择电影,61.5%消费者会选择综艺,47.4%消费者会选择动漫,29.4%消费者会选择纪录片。那么在未来,如何将大数据、人工智能技术运用到影视产业,促进产业智能化、智慧化升级,成为国内发展的新态势。
图技术需求
让更多人看见,是内容行业不变的准则。 但在现阶段,观影人普遍存在无法第一时间找到心仪影片的痛点,往往将时间浪费在菜单栏寻找或搜索框检索上。因此,影视行业应该将内容直接面向用户,根据观众的观影习惯“投其所好”。基于此背景,通过图数据库技术,将电影参演者信息、制作方信息、观影人信息、电影类型信息等相关的知识概念抽取出来,构建电影知识图谱,为影视从业人员提供全局视角,根据观众观音习惯快速匹配合适内容。
以Galaxybase图数据库构建电影知识图谱的基本原理图如下。
图模型构建
构建电影、观众、参影人之间的互联关系,可根据实际情况进行展开,将电影、观众、参影人、IP、标签设置为点,参影人与电影、观众与电影、电影与IP、电影与标签间的依赖关系设置为边。接下来使用Galaxybase图数据库来创建数据模型,点类型和点属性如下表所示。
点类型 | 属性 |
---|---|
参影人 | 参影人ID、出生年份、姓名等 |
观众 | 观众ID、观众类型等 |
电影 | 电影ID、上映年份、语言、评分、电影名等 |
IP | IP_ID、类型、IP名称等 |
标签 | 标签名 |
边类型、起始点类型、终止点类型如下表所示。
边类型 | 起始点类型 | 终止点类型 |
---|---|---|
作者 | IP | 参影人 |
相关 | IP | IP |
属于 | IP | 标签 |
参演 | 参影人 | 电影 |
主演 | 参影人 | 电影 |
导演 | 参影人 | 电影 |
属于 | 参影人 | 标签 |
相关 | 电影 | IP |
属于 | 电影 | 标签 |
观影 | 观众 | 观影 |
相似 | 标签 | 标签 |
电影知识图谱模型如下图所示。
图谱应用 - 电影推荐
在电影知识图谱中,系统将根据观众观看过的历史电影信息,为其推荐可能感兴趣的内容到首页,提高电影的点击率和观众满意度。举例,在上文所建图模型中,系统将寻找编号为“A001”的观众观看过的历史电影,从其历史电影的IP、标签出发,推测其观影偏好,找到风格类似的电影,自动将这些电影推荐至首页。
查询语句
// 查询观众 ID 为 “A001”的观众历史观影数据
MATCH p1=(:观众{观众ID:"A001"})-[:观影]->(m1:电影)
WITH p1,m1
// 找到上述电影的标签和IP
MATCH p2=(m1)-[:属于|相关]-(m2)
WITH p1,p2,m2
// 找与上述电影有相同标签或IP的其它电影
MATCH p3=(m2)-[:属于|相关]-(m3:电影)
// 返回该观众历史观影数据,相关电影推荐
RETURN p1,p2,p3
查询结果
如下图所示,根据返回结果可以发现观众ID为“A001”的观众观看过ID为“7873”、“M99”、“890”的三部影片,而ID为“456”的影片,与“M99”拥有一个相同IP,两个相同标签;ID为“34535”、“67856”的影片与上述电影均有两个相同标签,由此推测观众可能对这三部影片感兴趣,可以建议系统优先推荐。
图谱应用 - 智能问答
在电影知识图谱中,应当存在简单的问答推理功能,满足用户对电影、演员个性化选择的需求。举例,观众观看了吴京主演的长津湖,想起来甄子丹和吴京都是我们熟知的武打影星,那他们有没有一起参与主演的电影呢,在上文所建图模型中,我们将进行探查。
查询语句
// 查询有两个人参与或主演的电影
MATCH p1=(m1:参影人)-[r1:参演|主演]-(m2:电影)-[r2:参演|主演]-(m3:参影人)
// 参影人的变量同时去匹配吴京和甄子丹两个姓名
WHERE m1.姓名 = "甄子丹" AND m3.姓名 = "吴京"
WITH m2,p1
// 查询这个电影的标签和IP
MATCH p2=(m2)-[:相关|属于]-(m4)
// 返回两条路径
RETURN p1,p2
查询结果
如下图所示,可以看到吴京和甄子丹在标签内同属功夫巨星,他们一同参演或主演的电影是杀破狼,这部影片属于动作片和剧情片,系统将用户搜索的结果返回,并将影片推荐至首页。
结语
以上仅为电影知识图谱的简单展示,通过上述两个例子,可以看到相较于传统的推荐算法,基于图数据库的知识图谱,能够抽取电影信息、参影人信息、观影信息等数据,将用户、电影、演员之间的依赖关系以全局统一视角进行整合,挖掘观众与电影间内在的隐性关联,进行精准电影推荐和用户个性化问答,提高用户观影体验,助力影视产业实现智能化升级。
后续,我们会在创邻科技微信公众号与官网发布更多图数据库热点应用场景和前沿资讯,并将可复现的数据集、建模方法、查询语句进行公开,欢迎对图数据库感兴趣的同学关注。