全网最全知识图谱讲解!

本文介绍了知识图谱的定义、发展历程、表达方式(RDF和属性图),以及在金融、工业、能源、社交和零售领域的应用。强调了知识图谱在大数据和人工智能时代的重要性,以及其面临的挑战和未来发展趋势,包括图数据库的优化和技术融合的发展方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是知识图谱

知识图谱标准化白皮书定义:知识图谱(Knowledge Graph)以结构化的形式描述客观世界中概念、实体及其关系,将互联网的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解互联网海量信息的能力。

简单讲,知识图谱由节点(point)和边(edge)组成,每个节点表示一个实体,实体可以指客观世界中的人、事、物,每条边表示一种关系,关系可以表达不同实体间的联系。本质上,知识图谱可以理解为以图结构存储的语义网络。

在这里插入图片描述

知识图谱诞生背景

知识图谱源于20世纪50年代,发展至今可大致分为三个阶段。第一阶段(1950年-1977年)是知识图谱的启蒙期,这一时期文献索引的符号逻辑被提出,并逐渐成为研究当代科学发展脉络的常用方法。第二阶段(1977年-2012年)是知识图谱的成长期,这一阶段语义网络得到快速发展,知识本体的研究成为计算机科学的重要领域,在其期间出现了例如WordNet、Cyc、Hownet等大规模的人工知识库,使得知识更易于在计算机之间和计算机与人之间进行交换流通。第三阶段(2012年-至今)是知识图谱的繁荣期,2012年Google公司率先提出知识图谱(Knowledge Graph,KG)概念,谷歌公司通过知识图谱技术,改善了搜索引擎性能,增强了用户搜索体验,同时也拉开了现代知识图谱的篇章。

当前,随着大数据时代的到来,数据量呈现井喷式增长,知识图谱也从学术圈朝着适合现代化企业的广义大规模知识图谱转变。在人工智能技术的蓬勃发展下,底层图数据库存储、算力规模化部署等知识图谱关键技术难点得到一定程度解决。在搜索引擎领域之外,知识图谱技术已成为电商、医疗、金融、能源等领域的热点技术,解决行业生产环节中的核心痛点。

知识图谱的表达方式

上文有说,知识图谱本质是是一种语义网络,其节点代表实体,边代表实体间的语义关系,基本的逻辑结构分为模式层和数据层。模式层在数据层之上,为知识图谱的核心,存储的是经过提炼的知识类数据模型,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值