P1083 [NOIP2012 提高组] 借教室 题解

二分+差分

思路:

  • 看数据范围 1 0 6 10^6 106,则需要nlogn级算法
  • 思考单调性,如果当前订单无法满足,则后面的更不可能了
  • 二分订单定义域是从1到n二分到第一个无法满足的订单号,如果最后一个都能满足则所有订单都能满足
  • 如何判定是否满足,check函数:

遍历每一天,把每一天订单都加上看能不能满足,由区间加想到差分,
一个订单每天用的教室数相等则相当于一个区间加上相同的数,

注意:
r和d最大都是 1 0 9 10^9 109所以需要long long否则不能通过最后一个测试点

/*
 * @Descripttion : P1083 [NOIP2012 提高组] 借教室
 * @Autor        : xiyan
 * @Date         : 2022-02-28 11:28:20
 * @LastEditTime : 2022-03-02 11:09:47
 */
#include <bits/stdc++.h>
using namespace std;
#define maxn 1000005
typedef long long ll;
typedef struct applicant
{
    ll d;
    ll s;
    ll t;

} applicant;
int n, m;
applicant app[maxn];
//需要
ll need[maxn];
// 差分数组
ll delta[maxn];
// 需求数组
ll res[maxn];
void input()
{
    scanf("%d %d",&n,&m);
    for (int i = 1; i <=n; i++)
    {
        scanf("%d",&res[i]);
    }
    for (int i = 1; i <=m; i++)
    {
        scanf("%d %d %d",&(app[i].d),&(app[i].s),&(app[i].t));
    }
}
// 检查第m个订单是否能满足
bool check(int m)
{
    // cout<<"m="<<m<<endl;
    memset((delta),0,sizeof(delta));
    // 遍历每个订单
    for (int i = 1; i <=m; i++)
    {
        delta[app[i].s]+=app[i].d;
        delta[app[i].t+1]-=app[i].d;
    }
    // 遍历每一天
    for (int i = 1; i <=n; i++)
    {
        
        need[i]=need[i-1]+delta[i];
        // cout<<i<<":"<<need[i]<<endl;
        if(need[i]>res[i])return false;
    }
    return true;
}
// 到那一天不满足
int main()
{
    input();
    int l = 1, r = m;
    while (l<r)
    {
        // cout<<l<<"-"<<r<<endl;
        int mid = (l + r) >> 1;
        if (check(mid))
        {
            l = mid + 1;
        }
        else
        {
            r = mid;
        }
    }
    if(check(m)){
        cout<<"0";
        return 0;
    }
        cout<<-1<<endl<<l;
    

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值