二分+差分
思路:
- 看数据范围 1 0 6 10^6 106,则需要nlogn级算法
- 思考单调性,如果当前订单无法满足,则后面的更不可能了
- 二分订单定义域是从1到n二分到第一个无法满足的订单号,如果最后一个都能满足则所有订单都能满足
- 如何判定是否满足,check函数:
遍历每一天,把每一天订单都加上看能不能满足,由区间加想到差分,
一个订单每天用的教室数相等则相当于一个区间加上相同的数,
注意:
r和d最大都是
1
0
9
10^9
109所以需要long long否则不能通过最后一个测试点
/*
* @Descripttion : P1083 [NOIP2012 提高组] 借教室
* @Autor : xiyan
* @Date : 2022-02-28 11:28:20
* @LastEditTime : 2022-03-02 11:09:47
*/
#include <bits/stdc++.h>
using namespace std;
#define maxn 1000005
typedef long long ll;
typedef struct applicant
{
ll d;
ll s;
ll t;
} applicant;
int n, m;
applicant app[maxn];
//需要
ll need[maxn];
// 差分数组
ll delta[maxn];
// 需求数组
ll res[maxn];
void input()
{
scanf("%d %d",&n,&m);
for (int i = 1; i <=n; i++)
{
scanf("%d",&res[i]);
}
for (int i = 1; i <=m; i++)
{
scanf("%d %d %d",&(app[i].d),&(app[i].s),&(app[i].t));
}
}
// 检查第m个订单是否能满足
bool check(int m)
{
// cout<<"m="<<m<<endl;
memset((delta),0,sizeof(delta));
// 遍历每个订单
for (int i = 1; i <=m; i++)
{
delta[app[i].s]+=app[i].d;
delta[app[i].t+1]-=app[i].d;
}
// 遍历每一天
for (int i = 1; i <=n; i++)
{
need[i]=need[i-1]+delta[i];
// cout<<i<<":"<<need[i]<<endl;
if(need[i]>res[i])return false;
}
return true;
}
// 到那一天不满足
int main()
{
input();
int l = 1, r = m;
while (l<r)
{
// cout<<l<<"-"<<r<<endl;
int mid = (l + r) >> 1;
if (check(mid))
{
l = mid + 1;
}
else
{
r = mid;
}
}
if(check(m)){
cout<<"0";
return 0;
}
cout<<-1<<endl<<l;
return 0;
}