高等数学公式及其结论(上)

高等数学公式及其结论by戏言3.0

0.高等数学基础篇

0.1三角函数

1.三倍角公式

sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α \sin 3\alpha =3\sin\alpha -4\sin^{3}\alpha\\ \cos 3\alpha =4\cos^{3}\alpha-3\cos\alpha sin3α=3sinα4sin3αcos3α=4cos3α3cosα

2.积化和差公式

sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin\alpha\cos\beta=\frac{1}{2}\left[\sin\left( \alpha+\beta \right)+\sin\left( \alpha-\beta \right)\right] \\ \cos\alpha\sin\beta=\frac{1}{2}\left[\sin\left( \alpha+\beta \right)-\sin\left( \alpha-\beta \right)\right] \\ \cos\alpha\cos\beta=\frac{1}{2}\left[\cos\left( \alpha+\beta \right)+\cos\left( \alpha-\beta \right)\right] \\ \sin\alpha\sin\beta=-\frac{1}{2}\left[\cos\left( \alpha+\beta \right)-\cos\left( \alpha-\beta \right)\right] \\ sinαcosβ=21[sin(α+β)+sin(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]cosαcosβ=21[cos(α+β)+cos(αβ)]sinαsinβ=21[cos(α+β)cos(αβ)]

3.积化和差公式

sin ⁡ α + s i n β = 2 s i n α + β 2 cos ⁡ α − β 2 sin ⁡ α − s i n β = 2 c o s α + β 2 sin ⁡ α − β 2 cos ⁡ α + c o s β = 2 c o s α + β 2 cos ⁡ α − β 2 cos ⁡ α − c o s β = − 2 s i n α + β 2 sin ⁡ α − β 2 \sin \alpha+sin\beta=2sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin \alpha-sin\beta=2cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos \alpha+cos\beta=2cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos \alpha-cos\beta=-2sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ sinα+sinβ=2sin2α+βcos2αβsinαsinβ=2cos2α+βsin2αβcosα+cosβ=2cos2α+βcos2αβcosαcosβ=2sin2α+βsin2αβ

4.万能公式

sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \sin\alpha=\frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}\\ \cos\alpha=\frac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}\\ \tan\alpha=\frac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{\alpha}{2}}\\ sinα=1+tan22α2tan2αcosα=1+tan22α1tan22αtanα=1tan22α2tan2α

记忆方法,勾股数 2 t 、 1 − t 2 、 1 + t 2 2t、1-t^2、1+t^2 2t1t21+t2

在这里插入图片描述

0.2等式

1.常用等式

arctan ⁡ e x + arctan ⁡ e − x = π 2 arctan ⁡ x + arctan ⁡ 1 x = π 2 \large\arctan e^{x} +\arctan e^{-x}=\frac{\pi}{2}\\ \large\arctan x +\arctan \frac{1}{x}=\frac{\pi}{2} arctanex+arctanex=2πarctanx+arctanx1=2π

arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x +\arccos x=\frac{\pi}{2} arcsinx+arccosx=2π

arctan ⁡ x + a r c c o t x = π 2 \arctan x +arccot x=\frac{\pi}{2} arctanx+arccotx=2π

I = ∫ 0 + ∞ e − x 2 d x = π 2 可 以 用 二 重 积 分 方 法 证 明 I=\int_{0}^{+\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}\quad 可以用二重积分方法证明 I=0+ex2dx=2π

sin ⁡ n π = 0 , cos ⁡ n π = ( − 1 ) n ∫ 0 + ∞ e − a x d x = 1 a ∫ 0 + ∞ sin ⁡ x x d x = π 2 ∫ a b ( x − a + b 2 ) d x = 0 中 值 定 理 可 能 用 到 ∫ 0 1 x m ( 1 − x ) n d x = ∫ 0 1 x n ( 1 − x ) m d x \large\sin n\pi=0,\cos n\pi=(-1)^n\\ \int_{0}^{+\infty}e^{-ax}dx=\frac{1}{a}\\ \int_{0}^{+\infty}\frac{\sin x}{x}dx=\frac{\pi}{2}\\ \int_{a}^{b}(x-\frac{a+b}{2})dx=0\quad 中值定理可能用到\\ \int_{0}^{1}x^m(1-x)^ndx=\int_{0}^{1}x^n(1-x)^mdx\\ sinnπ=0,cosnπ=(1)n0+eaxdx=a10+xsinxdx=2πab(x2a+b)dx=001xm(1x)ndx=01xn(1x)mdx

( x x ) ′ = x x ( 1 + ln ⁡ x ) sin ⁡ ( α + n π ) = ( − 1 ) n sin ⁡ n α Γ 函 数 Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x Γ ( α ) = 2 ∫ 0 + ∞ x 2 α − 1 e − x 2 d x Γ ( α + 1 ) = α Γ ( α ) Γ ( 1 ) = 1 Γ ( 1 2 ) = π Γ ( n + 1 ) = n ! (x^x)'=x^x(1+\ln x)\\ \sin(\alpha+n\pi)=(-1)^n\sin n\alpha\\ \Gamma函数\\ \large\Gamma(\alpha)=\int_0^{+\infty}{x^{\alpha-1}e^{-x}dx}\\ \large\Gamma(\alpha)=2\int_0^{+\infty}{x^{2\alpha-1}e^{-x^2}dx}\\ \Gamma(\alpha+1)=\alpha\Gamma(\alpha)\\ \Gamma(1)=1\\ \Gamma(\frac{1}{2})=\sqrt{\pi}\\ \Gamma(n+1)=n!\\ (xx)=xx(1+lnx)sin(α+nπ)=(1)nsinnαΓΓ(α)=0+xα1exdxΓ(α)=20+x2α1ex2dxΓ(α+1)=αΓ(α)Γ(1)=1Γ(21)=π Γ(n+1)=n!

2.重要变换

n + 1 ± n = 1 n + 1 ∓ n \sqrt{n+1}\pm\sqrt{n}=\frac{1}{\sqrt{n+1}\mp\sqrt{n}} n+1 ±n =n+1 n 1

arctan ⁡ x ± a r c t a n y = x ± y 1 ∓ x y \arctan x\pm arctany=\frac{x\pm y}{1\mp xy} arctanx±arctany=1xyx±y

∣ x n − A ∣ < k n − 1 ∣ x 1 ∣ lim ⁡ n → ∞ k n − 1 ∣ x 1 ∣ = 0 ⇒ lim ⁡ n → ∞ ∣ x n ∣ = 0 \left|x_n-A \right|<k^{n-1}\left|x_1\right|\quad\lim_{n \to \infty} k^{n-1}\left|x_1\right|=0\Rightarrow \lim_{n \to \infty} \left|x_n\right| =0 xnA<kn1x1nlimkn1x1=0nlimxn=0

x ± x 2 + 1 = 1 x 2 + 1 ∓ x x\pm\sqrt{x^2+1}=\frac{1}{\sqrt{x^2+1}\mp x} x±x2+1 =x2+1 x1

( x ± 1 x ) d x = x d ( x ∓ 1 x ) (x\pm\frac{1}{x})\mathrm{d}x=x\mathrm{d}(x\mp\frac{1}{x}) (x±x1)dx=xd(xx1)

有限和与积分和
∑ k = 1 n f ( a + b − a n k ) b − a n = x k = a + k b − a n ∑ k = 1 n ∫ x k − 1 x k f ( x k ) d x 特 别 的 ∑ k = 1 n f ( k n ) 1 n = x k = k n ∑ k = 1 n ∫ x k − 1 x k f ( x k ) d x \sum\limits_{k=1}^{n} f(a+\frac{b-a}{n}k)\frac{b-a}{n}\xlongequal{x_k=a+k\frac{b-a}{n}}\sum\limits_{k=1}^{n} \int_{x_{k-1}}^{x_k}f(x_k)dx\quad\quad \\ 特别的\sum\limits_{k=1}^{n} f(\frac{k}{n})\frac{1}{n}\xlongequal{x_k=\frac{k}{n}}\sum\limits_{k=1}^{n} \int_{x_{k-1}}^{x_k}f(x_k)dx\quad\quad k=1nf(a+nbak)nbaxk=a+knba k=1nxk1xkf(xk)dxk=1nf(nk)n1xk=nk k=1nxk1xkf(xk)dx
积分与积分和
∫ a b f ( x ) d x = ∑ k = 1 n ∫ x k − 1 x k f ( x ) d x \int_{a}^{b}f(x)dx=\sum\limits_{k=1}^{n} \int_{x_{k-1}}^{x_k}f(x)dx abf(x)dx=k=1nxk1xkf(x)dx
级数与积分
∫ a b f ( x ) d x = lim ⁡ n → ∞ ∑ k = 1 n f ( a + b − a n k ) b − a n = lim ⁡ n → ∞ ∑ k = 0 n − 1 f ( a + b − a n k ) b − a n \int_{a}^{b}f(x)dx=\lim_{n\to\infty}\sum\limits_{k=1}^{n} f(a+\frac{b-a}{n}k)\frac{b-a}{n}=\lim_{n\to\infty}\sum\limits_{k=0}^{n-1} f(a+\frac{b-a}{n}k)\frac{b-a}{n} abf(x)dx=nlimk=1nf(a+nbak)nba=nlimk=0n1f(a+nbak)nba

0.3不等式

1.绝对值不等式

∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ \left|\left|a\right|-\left|b\right|\right| \leq \left|a\pm b\right| \leq \left|a\right|+\left|b\right| aba±ba+b

积分形式:
∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \left|\int_{a}^{b} f\left(x\right) dx\right|\leq \int_{a}^{b}\left|f\left(x\right)\right|dx abf(x)dxabf(x)dx

2.柯西不等式

( a 2 + b 2 ) ( c 2 + d 2 ) ≥ ( a c + b d ) 2 当 且 仅 当 a b = c d \left(a^2+b^2\right)\left(c^2+d^2\right) \geq \left(ac+bd\right)^2 当且仅当 ab=cd (a2+b2)(c2+d2)(ac+bd)2ab=cd

一般形式:
∑ i = 1 n a i 2 ∑ i = 1 n b i 2 ≥ ( ∑ i = 1 n a i b i ) 2 \sum\limits_{i=1}^n a_i^2 \sum\limits_{i=1}^n b_i^2 \geq \left(\sum\limits_{i=1}^n a_i b_i\right)^2 i=1nai2i=1nbi2(i=1naibi)2

积分形式:证明积分题常用看到平方想柯西,当且仅当线性相关时成立

( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x (\int_{a}^{b}f(x)g(x)dx)^2\leq\int_{a}^{b}f^2(x)dx\int_{a}^{b}g^2(x)dx (abf(x)g(x)dx)2abf2(x)dxabg2(x)dx
判别式:证明柯西的工具
∑ k = 1 n ( λ a k − b k ) 2 ≥ 0 \sum\limits_{k=1}^{n}(\lambda a_k-b_k)^2 \geq0 k=1n(λakbk)20

3. 均值不等式

常见形式:
2 1 a + 1 b ≤ a b ≤ a + b 2 ≤ a 2 + b 2 2 \frac 2{\frac{1}{a}+\frac{1}{b}}\leq \sqrt{ab}\leq \frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}} a1+b12ab 2a+b2a2+b2

一般形式:
n ∑ i = 1 n 1 a i ≤ ∏ i = 1 n a i n ≤ ∑ i = 1 n a i n ≤ ∑ i = 1 n a i 2 n \frac{n}{\sum\limits_{i=1}^n\frac{1}{a_i}}\leq \sqrt[n]{\prod_{i=1}^{n}a_i}\leq \frac{\sum\limits_{i=1}^n a_i}{n}\leq \sqrt \frac{\sum\limits_{i=1}^n{a_i^2}}{n} i=1nai1nni=1nai ni=1naini=1nai2

4.其他不等式

( n 2 ) n 2 ≤ n ! ≤ ( n + 1 2 ) n ( 1 + 1 n ) n ≤ e ≤ ( 1 + 1 n ) n + 1 x − 1 ≤ ⌊ x ⌋ ≤ x ≤ ⌈ x ⌉ ≤ x + 1 2 π x < sin ⁡ x < x < tan ⁡ x 0 < x < π 2 arctan ⁡ x ≤ x ≤ arcsin ⁡ x 0 ≤ x ≤ 1 1 1 + x < ln ⁡ ( 1 + 1 x ) < 1 x x 1 + x ≤ ln ⁡ ( 1 + x ) ≤ x ∫ 0 a f ( x ) d x + ∫ 0 b f − 1 ( x ) d x > = a b , 当 且 仅 当 b = f ( a ) ( ∫ 0 a f ( x ) g ( x ) d x ) 2 ≤ ∫ 0 a f 2 ( x ) d x ∫ 0 a g 2 ( x ) d x 1 ≤ n n ≤ 1 + x n ∏ i = 1 n ( 1 + a i ) ≥ 1 + ∑ i = 1 n a i 注 : a i > − 1 且 同 号 放 缩 常 用 ( 1 + h ) n ≥ 1 + n h ( 1 + 1 n ) n < e 当 f ( x ) 单 调 递 增 ∑ i = 0 n − 1 f ( x i ) 1 n ≤ ∫ 0 1 f ( x ) d x ≤ ∑ i = 1 n f ( x i ) 1 n \left(\frac{n}{2}\right)^{\frac{n}{2}}\leq n!\leq\left(\frac{n+1}{2}\right)^n\\ \left(1+\frac{1}{n}\right)^n \leq e\leq \left(1+\frac{1}{n}\right)^{n+1}\\ x-1\leq \left\lfloor{x}\right\rfloor\leq{x}\leq \left\lceil{x}\right\rceil \leq{x+1}\\ \frac{2}{\pi}x<\sin x < x < \tan x \quad 0 < x <\frac{\pi}{2} \\ \arctan x \leq x \leq \arcsin x \quad 0 \leq x \leq 1 \\ \large\frac{1}{1+x}<\ln\left(1+\frac{1}{x}\right)<\frac{1}{x}\\ \frac{x}{1+x}\leq\ln\left(1+x\right)\leq x \\ \int_{0}^{a}f(x)dx+\int_{0}^{b}f^{-1}(x)dx>=ab,当且仅当b=f(a)\\ \large(\int_{0}^{a}f(x)g(x)dx)^2\leq\int_{0}^{a}f^2(x)dx\int_{0}^{a}g^2(x)dx 1\leq\sqrt[n]n\leq1+\frac{x}{\sqrt{n}}\\ \prod\limits_{i=1}^{n}(1+a_i)\geq1+\sum\limits_{i=1}^{n}a_i注:a_i>-1且同号放缩常用\\ (1+h)^n\geq1+nh\\ (1+\frac{1}{n})^n\lt e\\ 当f(x)单调递增\\ \sum\limits_{i=0}^{n-1} f(x_i)\frac{1}{n}\leq\int_{0}^{1}f(x)dx\leq \sum\limits_{i=1}^n f(x_i)\frac{1}{n}\\ (2n)2nn!(2n+1)n(1+n1)ne(1+n1)n+1x1xxxx+1π2x<sinx<x<tanx0<x<2πarctanxxarcsinx0x11+x1<ln(1+x1)<x11+xxln(1+x)x0af(x)dx+0bf1(x)dx>=ab,b=f(a)(0af(x)g(x)dx)20af2(x)dx0ag2(x)dx1nn 1+n xi=1n(1+ai)1+i=1naiai>1(1+h)n1+nh(1+n1)n<ef(x)i=0n1f(xi)n101f(x)dxi=1nf(xi)n1

泰勒展开丢项放缩

f ( x ) = f ( a ) + f ′ ( x ) ( x − a ) + f ′ ’ ( ξ ) 2 ( x − a ) 2 f(x)=f(a)+f{'}(x)(x-a)+\frac{f{'’}(\xi)}{2}(x-a)^2 f(x)=f(a)+f(x)(xa)+2f(ξ)(xa)2

f ′ ’ ( ξ ) > 0 则 f ( x ) ≥ f ( a ) + f ′ ( x ) ( x − a ) f{'’}(\xi)>0则f(x)\geq f(a)+f{'}(x)(x-a) f(ξ)>0f(x)f(a)+f(x)(xa)

斯特林公式
n ! = 2 π n ( n e ) n e θ 12 n , 0 < θ < 1 n ! ≈ 2 π n ( n e ) n , n 充分大 2 π n ( n e ) n < n ! < 2 π n ( n e ) n ( 1 + 1 12 n − 1 ) {n!=\sqrt{{2 \pi n}}{\mathop{{ \left( {\frac{{n}}{{e}}} \right) }}\nolimits^{{n}}}\mathop{{e}}\nolimits^{{\frac{{ \theta }}{{12n}}}},0 < \theta < 1}\\ {n! \approx \sqrt{{2 \pi n}}\mathop{{ \left( {\frac{{n}}{{e}}} \right) }}\nolimits^{{n}},n\text{充}\text{分}\text{大}}\\ {\sqrt{{2 \pi n}}\mathop{{ \left( {\frac{{n}}{{e}}} \right) }}\nolimits^{{n}} < n! < \sqrt{{2 \pi n}}\mathop{{ \left( {\frac{{n}}{{e}}} \right) }}\nolimits^{{n}}{ \left( {1+\frac{{1}}{{12n-1}}} \right) }} n!=2πn (en)ne12nθ,0<θ<1n!2πn (en)n,n2πn (en)n<n!<2πn (en)n(1+12n11)

1.一元微分学

1.重要极限

lim ⁡ x → ∞ ( 1 + a x ) x = e a \large\lim\limits_{x\to \infty} \left(1+\frac{a}{x}\right)^x=e^a xlim(1+xa)x=ea
lim ⁡ x → 0 sin ⁡ a x x = a \large \lim\limits_{x\to 0}\frac{\sin ax}{x}=a x0limxsinax=a
lim ⁡ x → + ∞ arctan ⁡ x = π 2 \large\lim\limits_{x\to +\infty}\arctan x=\frac{\pi}{2} x+limarctanx=2π lim ⁡ x → − ∞ arctan ⁡ x = − π 2 \large\lim\limits_{x\to -\infty}\arctan x=-\frac{\pi}{2} xlimarctanx=2π
∀ a > 0 lim ⁡ x → + ∞ x a e x = lim ⁡ x → 0 + x a ln ⁡ x = 0 \large \forall a>0 \quad \lim\limits_{x\to +\infty} \frac{x^a}{e^x}=\lim\limits_{x\to 0^+}x^a\ln x =0 a>0x+limexxa=x0+limxalnx=0
lim ⁡ x → 0 + x x = 1 \large\lim\limits_{x\to 0^+}x^x=1 x0+limxx=1
设 a > 0 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ n n = 1 \large设a>0\quad \lim\limits_{n\to \infty} \sqrt[n]{a}=\lim\limits_{n\to \infty}\sqrt[n]{n}=1 a>0nlimna =nlimnn =1
lim ⁡ u = 1 lim ⁡ v = ∞ } ⇒ lim ⁡ u v = e l i m ( u − 1 ) v \left. \begin{aligned} \lim u=1 \\ \lim v=\infty \end{aligned} \right\}\Rightarrow \lim u^v=e^{lim(u-1)v} limu=1limv=}limuv=elim(u1)v
lim ⁡ x → 0 f ( x ) x = 0 \lim\limits_{x\to 0}\frac{f(x)}{x}=0 x0limxf(x)=0并且连续
lim ⁡ x → 0 f ( x ) x = 0 ∥ a n d lim ⁡ x → 0 f ( x ) = f ( 0 ) ⇒ { f ( 0 ) = 0 f ′ ( 0 ) = 0 \lim\limits_{x\to 0}\frac{f(x)}{x}=0\|and\lim_{x\to 0}f(x)=f(0)\Rightarrow\left\{ \begin{aligned} f(0)=0\\ f^{'}(0)=0\\ \end{aligned} \right. x0limxf(x)=0andx0limf(x)=f(0){f(0)=0f(0)=0

欧 拉 常 数 lim ⁡ n → ∞ ( 1 + 1 2 + 1 3 + ⋯ + 1 n − ln ⁡ n ) = r ≈ 0.577 使 用 单 调 有 界 可 以 证 明 \large欧拉常数 \lim\limits_{n\to\infty}{(1+\frac{1}{2}+\frac{1}{3}+ \cdots+\frac{1}{n}-\ln{n})=r\approx0.577}使用单调有界可以证明 nlim(1+21+31++n1lnn)=r0.577使

2.重要结论

lim ⁡ n → ∞ a n = A ⇒ lim ⁡ n → ∞ ∣ a n ∣ = A lim ⁡ n → ∞ ∣ a n ∣ ⇔ lim ⁡ n → ∞ a n = 0 lim ⁡ n → ∞ a n = a ⇒ lim ⁡ n → ∞ a n = a { a n } 有 界 ∥ a n d lim ⁡ n → ∞ b n = 0 ⇒ lim ⁡ n → ∞ a n b n = 0 { a n } { b n } 其 中 一 个 收 敛 一 个 发 散 ⇒ { a n + b n } 发 散 拉 链 定 理 理 : lim ⁡ n → ∞ a n = A ⇔ lim ⁡ n → ∞ a 2 n = lim ⁡ n → ∞ a 2 n + 1 = A s t o l z 公 式 ∗ ∞ 型 若 { b n } 严 格 单 调 增 ∥ a n d lim ⁡ n → ∞ b n = + ∞ ⇒ lim ⁡ n → ∞ a n b n = A 0 0 型 若 { b n } 严 格 单 调 减 趋 于 0 ∥ a n d lim ⁡ n → ∞ a n = 0 ⇒ lim ⁡ n → ∞ a n b n = A lim ⁡ n → ∞ a n = A ⇒ a 1 + a 2 + a 3 ⋯ a n n = A \begin{array}{ll} \lim\limits_{n\to\infty}{a_n}=A\Rightarrow\lim\limits_{n\to\infty}|a_n|=A\\ \lim\limits_{n\to\infty}|a_n|\Leftrightarrow\lim\limits_{n\to\infty}a_n=0\\ \lim\limits_{n\to\infty}{a_n}=a\Rightarrow\lim\limits_{n\to\infty}\sqrt{a_n}=\sqrt{a}\\ \{a_n\}有界\|and\lim\limits_{n\to\infty}b_n=0\Rightarrow\lim\limits_{n\to\infty}{a_nb_n}=0\\ \{a_n\}\{b_n\}其中一个收敛一个发散\Rightarrow\{a_n+b_n\}发散\\ 拉链定理理:\lim\limits_{n\to\infty}a_n=A\Leftrightarrow\lim\limits_{n\to\infty}a_{2n}=\lim\limits_{n\to\infty}a_{2n+1}=A\\ stolz公式\\ \frac{*}{\infty}型\quad\quad 若\{b_n\}严格单调增\|and\lim\limits_{n\to\infty}b_n=+\infty\Rightarrow\lim\limits_{n\to\infty}\frac{a_n}{b_n}=A\\ \frac{0}{0}型\quad\quad若\{b_n\}严格单调减趋于0\|and\lim\limits_{n\to\infty}a_n=0\Rightarrow\lim\limits_{n\to\infty}\frac{a_n}{b_n}=A\\ \lim\limits_{n\to\infty}a_n=A\Rightarrow\frac{a_1+a_2+a_3\cdots a_n}{n}=A\\ \end{array} nliman=Anliman=Anlimannliman=0nliman=anliman =a {an}andnlimbn=0nlimanbn=0{an}{bn}{an+bn}:nliman=Anlima2n=nlima2n+1=Astolz{bn}andnlimbn=+nlimbnan=A00{bn}0andnliman=0nlimbnan=Anliman=Ana1+a2+a3an=A

3.常用等价无穷小

sin ⁡ x ∼ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 \sin x \sim x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln \left(1+x\right)\sim e^x-1 sinxxtanxarcsinxarctanxln(1+x)ex1

$ a^x-1 \sim x \ln a $$ 1-\cos x \sim \frac{1}{2}x^2 $$ \left(1+x\right)^a -1\sim ax $
n ! ∼ 2 π n ( n e ) n n! \sim \sqrt{2\pi n}(\frac{n}{e})^n n!2πn (en)n x n ∼ 1 + x n − 1 \frac{x}{n} \sim \sqrt[n]{1+x}-1 nxn1+x 1 l o g a x ∼ x ln ⁡ a log _a x\sim \frac{x}{\ln a} logaxlnax
x − sin ⁡ x ∼ 1 6 x 3 x-\sin x \sim \frac{1}{6}x^3 xsinx61x3 arcsin ⁡ x − x ∼ 1 6 x 3 \arcsin x-x \sim \frac{1}{6}x^3 arcsinxx61x3 ln ⁡ ( x + 1 + x 2 ) ∼ x \ln{(x+\sqrt{1+x^2})}\sim x ln(x+1+x2 )x
x − arctan ⁡ x = x 3 3 x-\arctan x=\frac{x^3}{3} xarctanx=3x3 tan ⁡ x − x ∼ 1 3 x 3 \tan x -x\sim \frac{1}{3}x^3 tanxx31x3 x − ln ⁡ ( 1 + x ) = x 2 2 x-\ln (1+x)=\frac{x^2}{2} xln(1+x)=2x2

4.泰勒公式

sin ⁡ x = x − x 3 3 ! + o ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 ∣ x ∣ < 1 arccos ⁡ x = π 2 − x − 1 6 x 3 + o ( x 3 ) tan ⁡ x = x + x 3 3 + o ( x 3 ) arctan ⁡ x = x − x 3 3 + o ( x 3 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ∣ x ∣ < 1 ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) = ∑ n = 1 ∞ ( − 1 ) n + 1 x n n , − 1 < x ≤ 1 e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) = ∑ n = 0 ∞ x n n ! ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 , − 1 < x < 1 1 a x 2 + b x + c = 1 c − b c 2 x + b 2 − a c c 3 x 2 . . . . = 1 a ( x 2 − x 1 ) ∑ n = 0 ∞ ( x n x 1 n + 1 − x n x 2 n + 1 ) \sin x=x-\frac{x^3}{3!}+o\left(x^3\right)=\sum\limits_{n=0}^{\infty}{\left(-1\right)^n\frac{x^{2n+1}}{\left(2n+1\right)!}}\\ \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o\left(x^4\right)= \sum\limits_{n=0}^{\infty}\left(-1\right)^n\frac{x^{2n}}{\left(2n\right)!}\\ \arcsin x=x+\frac{x^3}{3!}+o\left(x^3\right)= \sum\limits_{n=0}^{\infty}\frac{\left(2n\right)!}{4^n\left(n!\right)^2\left(2n+1\right)}x^{2n+1} \quad \left|x\right|<1 \\ \arccos x=\frac{\pi}{2}-x-\frac{1}{6}x^3+o(x^3)\\ \tan x=x+\frac{x^3}{3}+o\left(x^3\right)\\ \arctan x=x-\frac{x^3}{3}+o\left(x^3\right)= \sum\limits_{n=0}^{\infty}\left(-1\right)^n\frac{x^{2n+1}}{\left(2n+1\right)} \quad \left|x\right|<1\\ \ln \left(1+x\right) =x-\frac{x^2}{2}+\frac{x^3}{3}+o\left(x^3\right)= \sum\limits_{n=1}^{\infty}\left(-1\right)^{n+1}\frac{x^n}{n} \quad,-1<x\leq 1\\ e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o\left(x^3\right)= \sum\limits_{n=0}^{\infty}\frac{x^{n}}{n!}\\ \left(1+x\right)^a =1+ax+\frac{a\left(a-1\right)}{2!}x^2+o\left(x^2\right)\\ \frac{1}{1-x}= \sum\limits_{n=0}^{\infty}x^n =1+x+x^2+x^3 ,-1<x<1\\ \frac{1}{ax^2+bx+c}=\frac{1}{c}-\frac{b}{c^2}x+ \frac{b^2-ac}{c^3}x^2.... =\frac{1}{a(x_2-x_1)}\sum\limits_{n=0}^{\infty}(\frac{x^n }{x_1^{n+1}}-\frac{x^n }{x_2^{n+1}})\\ sinx=x3!x3+o(x3)=n=0(1)n(2n+1)!x2n+1cosx=12!x2+4!x4+o(x4)=n=0(1)n(2n)!x2narcsinx=x+3!x3+o(x3)=n=04n(n!)2(2n+1)(2n)!x2n+1x<1arccosx=2πx61x3+o(x3)tanx=x+3x3+o(x3)arctanx=x3x3+o(x3)=n=0(1)n(2n+1)x2n+1x<1ln(1+x)=x2x2+3x3+o(x3)=n=1(1)n+1nxn,1<x1ex=1+x+2!x2+3!x3+o(x3)=n=0n!xn(1+x)a=1+ax+2!a(a1)x2+o(x2)1x1=n=0xn=1+x+x2+x3,1<x<1ax2+bx+c1=c1c2bx+c3b2acx2....=a(x2x1)1n=0(x1n+1xnx2n+1xn)

助记图

在这里插入图片描述

彼此之间相差 x 3 6 \large\frac{x^3}{6} 6x3

在这里插入图片描述

5.中值定理

5.1辅助函数

常见辅助函数

y = e λ x f ( x ) y ′ = e λ x ( λ f ( x ) + f ′ ( x ) ) y=e^{\lambda x}f(x)\quad y^{'}=e^{\lambda x}(\lambda f(x)+f^{'}(x)) y=eλxf(x)y=eλx(λf(x)+f(x))

y = f ( x ) f ′ ( x ) y ′ = ( f ′ ( x ) ) 2 + f ( x ) f ′ ′ ( x ) y=f(x)f'(x)\quad y^{'}=(f^{'}(x))^2+f(x)f^{''}(x) y=f(x)f(x)y=(f(x))2+f(x)f(x)

y = ln ⁡ f ( x ) y ′ = f ′ ( x ) f ( x ) y=\ln f(x)\quad y^{'}=\frac{f^{'}(x)}{f(x)} y=lnf(x)y=f(x)f(x)

5.2利用微分方程构造辅助函数

f ′ ( ξ ) = ( 1 − 1 ξ f ( ξ ) ) ⇒ y ′ = ( 1 − 1 x ) y ⇒ y = c e x x ) ⇒ c ( x ) = x f ( x ) e x f'(\xi)=(1-\frac{1}{\xi}f(\xi))\Rightarrow y^{'}=(1-\frac{1}{x})y\\ \Rightarrow y=\frac{c e^x}{x})\Rightarrow c(x)=\frac{xf(x)}{e^x} f(ξ)=(1ξ1f(ξ))y=(1x1)yy=xcex)c(x)=exxf(x)

5.3.拉格朗日中值定理

f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) ξ ∈ ( a , b ) f ( x + Δ x ) − f ( x ) = f ′ ( x + θ Δ x ) Δ x 0 < θ < 1 f(b)-f(a)=f^{'}(\xi)(b-a)\quad \xi \in(a,b)\\ f(x+\Delta x)-f(x)=f^{'}(x+\theta \Delta x)\Delta x \quad0<\theta<1 f(b)f(a)=f(ξ)(ba)ξ(a,b)f(x+Δx)f(x)=f(x+θΔx)Δx0<θ<1

6.高阶导数

( x n ) ( n ) = n ! ( a x ) ( n ) = a x ( ln ⁡ a ) n ( sin ⁡ ( a x + b ) ) ( n ) = a n sin ⁡ ( a x + b + n π 2 ) ( cos ⁡ ( a x + b ) ) ( n ) = a n cos ⁡ ( a x + b + n π 2 ) ( 1 a − x ) ( n ) = n ! ( a − x ) n + 1 ( 1 a + x ) ( n ) = ( − 1 ) n n ! ( a + x ) n + 1 ln ⁡ ( a x + b ) ( n ) = ( − 1 ) n − 1 a n ( n − 1 ) ! ( a x + b ) n \begin{array}{ll} (x^n)^{(n)}=n!\quad (a^x)^{(n)}=a^x(\ln a)^n\quad (\sin (ax+b))^{(n)}=a^n\sin(ax+b+\frac{n\pi}{2})\\ (\cos (ax+b))^{(n)}=a^n\cos(ax+b+\frac{n\pi}{2})\qquad\qquad\qquad\quad\large(\frac{1}{a-x})^{(n)}=\frac{n!}{(a-x)^{n+1}}\\ \large (\frac{1}{a+x})^{(n)}=\frac{(-1)^n n!}{(a+x)^{n+1}}\qquad\qquad\qquad\qquad\quad\large\ln (ax+b)^{(n)}=\frac{(-1)^{n-1}a^n(n-1)!}{(ax+b)^{n}} \end{array} (xn)(n)=n!(ax)(n)=ax(lna)n(sin(ax+b))(n)=ansin(ax+b+2nπ)(cos(ax+b))(n)=ancos(ax+b+2nπ)(ax1)(n)=(ax)n+1n!(a+x1)(n)=(a+x)n+1(1)nn!ln(ax+b)(n)=(ax+b)n(1)n1an(n1)!

2.一元积分学

1.积分表

∫ k d x = k x + C ∫ x μ d x = x μ + 1 μ + 1 + C , ( μ ≠ − 1 ) ∫ 1 x d x = ln ∣ x ∣ + C ∫ 1 1 + x 2 d x = arctan x + C ∫ 1 1 − x 2 d x = arcsin x + C ∫ cosd x = sin x + C ∫ cosd x = sin x + C ∫ sin x d x = − cos x + C ∫ 1 cos 2 x d x = ∫ sec 2 x d x = tan x + C ∫ 1 sin 2 x d x = ∫ csc 2 x d x = − cot x + C ∫ sec x tan x d x = sec x + C ∫ csc x cot x d x = − csc x + C ∫ sin ⁡ 2 x = x 2 − sin ⁡ 2 x 4 + C ∫ cos ⁡ 2 x = x 2 + sin ⁡ 2 x 4 + C ∫ e x d x = e x + C ∫ a x d x = a x ln a + C {{}_{ }^{ } \int _{ }^{ }k \text{d} x=kx+C}\\ {{}_{ }^{ } \int _{ }^{ }\mathop{{x}}\nolimits^{{ \mu }} \text{d} x=\frac{{\mathop{{x}}\nolimits^{{ \mu +1}}}}{{ \mu +1}}+C,{ \left( { \mu \neq -1} \right) }}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{x}} \text{d} x= \text{ln} { \left| {x} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{1+\mathop{{x}}\nolimits^{{2}}}} \text{d} x= \text{arctan} x+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\sqrt{{1-\mathop{{x}}\nolimits^{{2}}}}}} \text{d} x= \text{arcsin} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{cos} \text{d} x= \text{sin} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{cos} \text{d} x= \text{sin} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{sin} x \text{d} x=- \text{cos} x+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\mathop{{ \text{cos} }}\nolimits^{{2}}x}} \text{d} x={}_{ }^{ } \int _{ }^{ }\mathop{{ \text{sec} }}\nolimits^{{2}}x \text{d} x= \text{tan} x+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\mathop{{ \text{sin} }}\nolimits^{{2}}x}} \text{d} x={}_{ }^{ } \int _{ }^{ }\mathop{{ \text{csc} }}\nolimits^{{2}}x \text{d} x=- \text{cot} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{sec} x \text{tan} x \text{d} x= \text{sec} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{csc} x \text{cot} x \text{d} x=- \text{csc} x+C}\\ \int \sin^2 x=\frac{x}{2}-\frac{\sin 2x}{4}+C\\ \int \cos^2 x=\frac{x}{2}+\frac{\sin 2x}{4}+C\\ {{}_{ }^{ } \int _{ }^{ }\mathop{{e}}\nolimits^{{x}} \text{d} x=\mathop{{e}}\nolimits^{{x}}+C}\\ {{}_{ }^{ } \int _{ }^{ }\mathop{{a}}\nolimits^{{x}} \text{d} x=\frac{{\mathop{{a}}\nolimits^{{x}}}}{{ \text{ln} a}}+C}\\ kdx=kx+Cxμdx=μ+1xμ+1+C,(μ=1)x1dx=lnx+C1+x21dx=arctanx+C1x2 1dx=arcsinx+Ccosdx=sinx+Ccosdx=sinx+Csinxdx=cosx+Ccos2x1dx=sec2xdx=tanx+Csin2x1dx=csc2xdx=cotx+Csecxtanxdx=secx+Ccscxcotxdx=cscx+Csin2x=2x4sin2x+Ccos2x=2x+4sin2x+Cexdx=ex+Caxdx=lnaax+C

∫ sh x d x = ch x + C ∫ ch x d x = sh x + C ∫ tan x d x = − ln ∣ cos x ∣ + C ∫ cot x d x = ln ∣ sin x ∣ + C ∫ sec x d x = ln ∣ sec x + tan x ∣ + C ∫ csc x d x = ln ∣ csc x − cot x ∣ + C ∫ tan ⁡ x = tan ⁡ x − x + C ∫ cot ⁡ x = − cot ⁡ x − x + C ∫ 1 x 2 + a 2 d x = 1 a arctan x a + C ∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C ∫ 1 a 2 − x 2 d x = arcsin x a + C ∫ 1 x 2 + a 2 d x = ln ( x + x 2 + a 2 ) + C ∫ 1 x 2 − a 2 d x = ln ( x + x 2 − a 2 ) + C ∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 arcsin ⁡ x a + C ∫ x 2 ± a 2 d x = x 2 x 2 ± a 2 + a 2 2 ln ⁡ ∣ x + x 2 ± a 2 ∣ + C {{}_{ }^{ } \int _{ }^{ } \text{sh} x \text{d} x= \text{ch} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{ch} xdx= \text{sh} x+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{tan} x \text{d} x=- \text{ln} { \left| { \text{cos} x} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{cot} x \text{d} x= \text{ln} { \left| { \text{sin} x} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{sec} x \text{d} x= \text{ln} { \left| { \text{sec} x+ \text{tan} x} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ } \text{csc} x \text{d} x= \text{ln} { \left| { \text{csc} x- \text{cot} x} \right| }+C}\\ \int \tan x=\tan x-x+C\\ \int \cot x=-\cot x-x+C\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\mathop{{x}}\nolimits^{{2}}+\mathop{{a}}\nolimits^{{2}}}} \text{d} x=\frac{{1}}{{a}} \text{arctan} \frac{{x}}{{a}}+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\mathop{{x}}\nolimits^{{2}}-\mathop{{a}}\nolimits^{{2}}}} \text{d} x=\frac{{1}}{{2a}} \text{ln} { \left| {\frac{{x-a}}{{x+a}}} \right| }+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\sqrt{{\mathop{{a}}\nolimits^{{2}}-\mathop{{x}}\nolimits^{{2}}}}}} \text{d} x= \text{arcsin} \frac{{x}}{{a}}+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\sqrt{{\mathop{{x}}\nolimits^{{2}}+\mathop{{a}}\nolimits^{{2}}}}}} \text{d} x= \text{ln} { \left( {x+\sqrt{{\mathop{{x}}\nolimits^{{2}}+\mathop{{a}}\nolimits^{{2}}}}} \right) }+C}\\ {{}_{ }^{ } \int _{ }^{ }\frac{{1}}{{\sqrt{{\mathop{{x}}\nolimits^{{2}}-\mathop{{a}}\nolimits^{{2}}}}}} \text{d} x= \text{ln} { \left( {x+\sqrt{{\mathop{{x}}\nolimits^{{2}}-\mathop{{a}}\nolimits^{{2}}}}} \right) }+C}\\ \int \sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin\frac{x}{a}+C\\ \int \sqrt{x^2\pm a^2}dx=\frac{x}{2}\sqrt{x^2\pm a^2}+\frac{a^2}{2}\ln\left|x+\sqrt{x^2\pm a^2}\right|+C shxdx=chx+Cchxdx=shx+Ctanxdx=lncosx+Ccotxdx=lnsinx+Csecxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+Ctanx=tanxx+Ccotx=cotxx+Cx2+a21dx=a1arctanax+Cx2a21dx=2a1lnx+axa+Ca2x2 1dx=arcsinax+Cx2+a2 1dx=ln(x+x2+a2 )+Cx2a2 1dx=ln(x+x2a2 )+Ca2x2 dx=2xa2x2 +2a2arcsinax+Cx2±a2 dx=2xx2±a2 +2a2lnx+x2±a2 +C

2.常用定理及公式

1. f ( x ) f(x) f(x)为周期函数

∫ 0 n T f ( x ) d x = n T 2 2 ∫ 0 T f ( x ) d x ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x ∫ 0 n T f ( x ) d x = n ∫ 0 T f ( x ) d x ∫ n π ( n + 1 ) π ∣ sin ⁡ x ∣ d x = ( − 1 ) n ∫ n π ( n + 1 ) π sin ⁡ x d x \int_{0}^{nT}f(x)dx=\frac{nT^2}{2}\int_{0}^{T}f(x)dx\\ \int_{a}^{a+T}f(x)dx=\int_{0}^{T}f(x)dx\\ \int_{0}^{nT}f(x)dx=n\int_{0}^{T}f(x)dx\\ \int_{n\pi}^{(n+1)\pi}|\sin x|dx=(-1)^n\int_{n\pi}^{(n+1)\pi}\sin xdx\\ 0nTf(x)dx=2nT20Tf(x)dxaa+Tf(x)dx=0Tf(x)dx0nTf(x)dx=n0Tf(x)dxnπ(n+1)πsinxdx=(1)nnπ(n+1)πsinxdx

2.积分再现公式

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx abf(x)dx=abf(a+bx)dx

3.积分中值定理

若函数在闭区间 [ a , b ] 上连续,则 ∃ ξ ∈ [ a , b ] ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) 若 f ( x ) 和 g ( x ) 在闭区间 [ a , b ] 上可积,且 g ( x ) 在此区间上不变号,则 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x {\text{若}\text{函}\text{数}\text{在}\text{闭}\text{区}\text{间}{ \left[ {a,b} \right] }\text{上}\text{连}\text{续}\text{,}\text{则}}\\ { \exists \xi \in { \left[ {a,b} \right] }}\\ {\mathop{ \int }\nolimits_{{a}}^{{b}}f{ \left( {x} \right) } \text{d} x=f{ \left( { \xi } \left) { \left( {b-a} \right) }\right. \right. }}\\ {\text{若}f{ \left( {x} \right) }\text{和}g{ \left( {x} \right) }\text{在}\text{闭}\text{区}\text{间}{ \left[ {a,b} \right] }\text{上}\text{可}\text{积}\text{,}\text{且}g{ \left( {x} \right) }\text{在}\text{此}\text{区}\text{间}\text{上}\text{不}\text{变}\text{号}\text{,}\text{则}}\\ {\mathop{ \int }\nolimits_{{a}}^{{b}}f{ \left( {x} \right) }g{ \left( {x} \right) } \text{d} x=f{ \left( { \xi } \right) }\mathop{ \int }\nolimits_{{a}}^{{b}}g{ \left( {x} \right) } \text{d} x} [a,b],ξ[a,b]abf(x)dx=f(ξ)(ba)f(x)g(x)[a,b],g(x),abf(x)g(x)dx=f(ξ)abg(x)dx

3.反常积分敛散性

∫ 0 π 2 1 sin ⁡ α x d x 与 ∫ 0 π 2 1 cos ⁡ α x d x 与 ∫ 0 π 2 1 x α d x 同 敛 散 { 0 < α < 1 , 收 敛 α ≥ 1 , 发 散 \int_{0}^{\frac{\pi}{2}}\frac{1}{\sin^{\alpha}x}dx与\int_{0}^{\frac{\pi}{2}}\frac{1}{\cos^{\alpha}x}dx与\int_{0}^{\frac{\pi}{2}}\frac{1}{x^\alpha}dx同敛散\left\{ \begin{aligned} 0<\alpha<1,收敛\\ \alpha\geq1,发散 \end{aligned} \right. 02πsinαx1dx02πcosαx1dx02πxα1dx{0<α<1,α1,

∫ 2 ∞ 1 x ln ⁡ p x d x { p ≤ 1 , 发 散 p > 1 , 收 敛 \int_{2}^{\infty}\frac{1}{x\ln^px}dx\left\{ \begin{aligned} p\leq1,发散\\ p>1,收敛 \end{aligned} \right. 2xlnpx1dx{p1,p>1,

4.积分换元法

无理根式换元法
  • ∫ R ( x , a x + b c x + d n ) d x \int R(x,\sqrt[n]{\frac{ax+b}{cx+d}})dx R(x,ncx+dax+b )dx类型不定积分

t = a x + b c x + d n t=\sqrt[n]{\frac{ax+b}{cx+d}} t=ncx+dax+b

∫ R ( x , a x + b c x + d n ) d x \int R(x,\sqrt[n]{\frac{ax+b}{cx+d}})dx R(x,ncx+dax+b )dx

  • ∫ R ( x , a x 2 + b x + c n ) d x \int R(x,\sqrt[n]{ax^2+bx+c})dx R(x,nax2+bx+c )dx类型不定积分(欧拉替换法)

a x 2 + b x + c n = { t − a x a > 0 x t − c c > 0 t ( x − λ ) 或 t ( x − μ ) Δ > 0 方 程 有 两 个 根 λ , μ \sqrt[n]{ax^2+bx+c}=\left\{ \begin{array}{l} t-\sqrt ax\quad\quad\quad\quad\quad\quad a>0\\ xt-\sqrt c \quad\quad\quad\quad\quad\quad c>0\\ t(x-\lambda)或t(x-\mu)\quad \Delta>0方程有两个根\lambda,\mu\\ \end{array} \right. nax2+bx+c =ta xa>0xtc c>0t(xλ)t(xμ)Δ>0λ,μ

3.多元微分学

1.二元拉格朗日中值定理

f ( x 1 , y 1 ) − f ( x 2 , y 2 ) = ∇ f ( ξ , η ) ( Δ x , Δ y ) = f x ′ ( ξ , η ) ( x 1 − x 2 ) + f y ′ ( ξ , η ) ( y 1 − y 2 ) ξ ∈ ( x 1 , x 2 ) , η ∈ ( y 1 , y 2 ) f ( x + Δ x , y + Δ y ) − f ( x , y ) = f x ′ ( x + θ Δ x , y + θ Δ y ) Δ x + f y ′ ( x + θ Δ x , y + θ Δ y ) Δ y 0 < θ < 1 \large f(x_1,y_1)-f(x_2,y_2)=\nabla f(\xi,\eta)(\Delta x,\Delta y)\\ = f_x^{'}(\xi,\eta)(x_1-x_2)+f_y^{'}(\xi,\eta)(y_1-y_2)\quad \xi \in(x_1,x_2),\eta \in(y_1,y_2)\\ \large f(x+\Delta x,y+\Delta y)-f(x,y)=f_x^{'}(x+\theta\Delta x,y+\theta\Delta y)\Delta x+f_y^{'}(x+\theta\Delta x,y+\theta\Delta y)\Delta y \\\quad0<\theta<1 f(x1,y1)f(x2,y2)=f(ξ,η)(Δx,Δy)=fx(ξ,η)(x1x2)+fy(ξ,η)(y1y2)ξ(x1,x2),η(y1,y2)f(x+Δx,y+Δy)f(x,y)=fx(x+θΔx,y+θΔy)Δx+fy(x+θΔx,y+θΔy)Δy0<θ<1

  • 4
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 高斯公式是一种数学结论,它的公式是:∫f(x)dx = (f(a) + f(b))/2 + ∑i=1n (f(x_i) - (f(a) + f(b))/2)wi,其中a和b是定积分的下限和上限,x_i是积分的节点,wi是公式中的系数。 ### 回答2: 高等数学中的高斯公式是一个与曲线积分有关的重要公式,广泛应用于向量分析、微分几何、电磁学等领域。高斯公式可以将曲线积分转化为面积、体积的积分形式,使得计算更加方便。 高斯公式的一般形式为:$$\oint_S \textbf{F} \cdot \textbf{n} \, dS = \iiint_V \nabla \cdot \textbf{F} \, dV$$其中,$\textbf{F}$为向量场,$\textbf{n}$为曲面$S$上的单位法向量,$\nabla \cdot \textbf{F}$为向量场$\textbf{F}$的散度(即对向量场取散的结果),$dS$表示曲面元素的面积,$dV$表示体积元素。 这个公式的意义在于,通过对曲面上每个点上的向量$F$在其法向量$n$方向上的投影进行积分,可以得到整个曲面上的向量场$\textbf{F}$对曲面的影响大小(即通量);而右侧的积分则表示了向量场$\textbf{F}$在该曲面所包围的空间内的变化率。 高斯公式的应用非常广泛,例如在电磁学中,可以利用该公式计算电场和磁场的通量;在流体力学中,可以计算流场的通量;在微分几何中,可以计算曲率的变化等。 总之,高等数学中的高斯公式是一个非常重要的定理,它连接了曲线积分与面积、体积的积分之间的关系,为我们研究向量场在曲面和空间中的分布提供了一个有力的工具。 ### 回答3: 高等数学中的高斯公式是一个重要的积分公式。它将多重积分转化为对单个变量的积分运算,简化了计算过程。 高斯公式用于求解平面区域、曲面和空间区域内的某个量的积分。其一般形式为∯f(x,y)dS=∬Df(x,y)ds。 其中,积分区域D可以是二维平面上的有界区域,曲面或三维空间中的有界区域。f(x,y)表示待求的函数,dS表示曲面上的面积元素。ds表示平面上的面积元素。 高斯公式的核心思想是将积分区域D划分为无数小的区域,然后对每个小区域进行积分运算,并将所有小区域的积分结果相加。此外,公式中的f(x,y)函数可以是常数函数、多项式函数、三角函数等各种类型的函数。 高斯公式的应用广泛,可以解决许多与平面和空间区域有关的物理和数学问题。例如,计算平面曲线的弧长、曲面的面积、计算电场的通量等等。 总结来说,高等数学中的高斯公式是一个重要的积分公式,用于将多重积分转化为对单个变量的积分运算。它简化了计算过程,解决了许多与平面和空间区域有关的物理和数学问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值