PASCAL-5I小样本语义分割数据集的制作

本文详细介绍了PASCAL-5I数据集的制作过程,包括从PASCALVOC数据集抽样、类别划分、图片归类、数据集生成,以及对数据集中类别分布的可视化分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.前言

PASCAL-5I数据集是基于上一篇文章《pascal voc aug数据集》制作而成。本篇介绍了pascal-5i数据集原理以及制作过程,并可视化分析pasca-5i的类别分布。

PASCAL VOC AUG目录如下

  • pascal_voc_aug
    • JPEGImages
    • SegmentationClassAug
    • train.txt
    • trainval.txt
    • val.txt

1.1 流程分析

总体分为以下步骤:

  • 将pascal voc aug数据集的mask图片按照图片包含的类别归类
  • 根据归类结果,和类别划分,生成数据集
  • 将数据集类别情况详细统计

1.2 pascal-5i数据集介绍

pascal-5i来自于《One-Shot Learning for Semantic Segmentation》这篇经典小样本语义分割论文。它从PASCAL VOC 20个语义类的集合L中,我们抽样5个,并将它们视为测试标签集 L t e s t = { 5 i + 1 , . . . , 5 i + 5 } L_{test}=\{5i+1,...,5i+5\} Ltest={ 5i+1,...,5i+5},其中i为the fold number,剩下的15个形成了训练标签集 L t r a i n = { 5 i + 1 , . . . , 5 i + 5 } L_{train}=\{5i+1,...,5i+5\} Ltrain={ 5i+1,...,5i+5}。其实思路和k-fold交叉验证很像.

其中pascal-5i训练集来自pasca_voc_aug的训练集.其mask经过处理,也就是把非查询集的类别标记为背景.同样pascal-5i的验证集来自pasca_voc_aug的验证集.
在这里插入图片描述

2.图片归类

具体说明:如果某张训练集图片包含1,2,3类,那么他的文件名会被记录在train目录下的1.txt、2.txt、3.txt.

def generate_class(mode):
    """
    将图片进行归类
    :param mode: train or val
    :return: 
    """
    dic={
   }
    data_list = txt_to_list(mode)
    for file_name in tqdm(data_list):
        mask_path = os.path.join(config.mask_path, file_name + ".png")
        mask = Image.open(mask_path)
        mask_arr=np.array(mask)
        class_set=set(np.unique(mask_arr)) - {
   0
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值