从零开始玩转TensorFlow:小明的机器学习故事 6

小明与企业客服升级的故事

1 场景背景:让客户满意的挑战

小明近期在一家电商企业实习,发现公司常接到顾客各种各样的问题:

  • “你们的最新产品有什么功能?”
  • “能否介绍一下优惠活动?”
  • “是否支持7天无理由退换?”
  • “我怎么查物流?”

人工客服应接不暇,于是小明提出打造一款 “自动客服机器人” 的想法,专门回答常见问题或提供产品介绍。除此之外,市场部门也希望能自动生成一段营销文案来吸引顾客。小明决定用深度学习中的RNN文本生成来为企业客服带来更多“创意回复”的可能性。


2 目标与原理:RNN帮助“写文案、答问题”

  1. 目标

    • 降低客服压力:自动回复部分重复性问题;
    • 生成简易文案:基于用户关键字自动组成一句或几句介绍文本。
  2. 为什么使用RNN来做文本生成

    • 序列数据处理:客服对话、产品描述都是自然语言文本;
    • 灵活回答:既能在已有数据基础上“学习”企业话术,又能在生成阶段适当拼接新词汇,提供多样化回复;
    • 融入对话场景:后续也可扩展为更高级的Seq2Seq或Transformer结构。

3 从数据到部署:完整代码示例

下面以两个脚本 train.pyapp.py 来演示:

  1. train.py:包含极简示例数据、数据处理、RNN 模型构建与训练,并保存为 H5 格式(Keras 3 兼容)。
  2. app.py:使用 Flask 加载已训练的 H5 模型,实现一个简易的网页界面,让用户输入开头文字,系统自动继续生成文本。

提示:以下示例仅作演示用,数据量非常少,生成效果可能“驴唇不对马嘴”。在商业场景需准备更多语料、做更强大模型或使用检索式问答等。


3.1 项目目录结构

在名为 rnn_text_generation_demo 的文件夹中放置以下文件:

rnn_text_generation_demo/
 ├── train.py         # 训练脚本
 ├── app.py           # Flask 部署脚本
 └── saved_model/     # 保存模型用,脚本运行后自动生成

3.2 训练脚本:train.py

请将下面代码复制到 train.py 文件里。它会执行以下步骤:

  1. 准备一小段原始文本数据(客服与产品描述示例)。
  2. 清洗、分词,构建词典。
  3. 组织 (input, target) 序列进行训练。
  4. 构建并训练一个简单的 LSTM 模型。
  5. 以 H5 格式 保存模型 + 词典信息(为 Keras 3 兼容重点)。
"""
train.py

示例:使用 tf.keras + RNN(LSTM) 做简单的文本生成训练,并以H5方式保存模型,兼容Keras 3。
"""

import tensorflow as tf
import re
import os

# ============= 1. 示例数据(极简) =============
raw_text_corpus = [
    "我们的新款手机屏幕是6.5英寸,拥有1080P高清分辨率。",
    "这款耳机支持降噪功能,续航时间可达24小时。",
    "满500减50的活动正在进行中,抓紧抢购哦!",
    "这款运动鞋防水、防滑,适合户外运动。",
    "物流信息可通过订单号在官网查询。",
    "我们的客服团队将竭诚为您服务。",
    "欢迎咨询产品详情或优惠活动。"
]

# ============= 2. 数据清洗与分词 =============
def simple_clean_text(text):
    # 仅作基本示例:去除特殊字符,只保留中英文、数字和常见标点
    text = re.sub(r"[^a-zA-Z0-9\u4e00-\u9fa5。,!?:,\.\!\?\:]", "", text)
    return text

def simple_tokenize(text):
    """
    极简分词示例:把中文当作逐字拆分,英文数字以字符拆分。
    真实项目请使用jieba或更成熟分词工具。
    """
    text = text.strip()
    tokens = []
    for char in text:
        if char.strip():
            tokens.append(char)
    return tokens

cleaned_sentences = []
for line in raw_text_corpus:
    line = simple_clean_text(line)
    tokens = simple_tokenize(line)
    cleaned_sentences.append(tokens)

# ============= 3. 建立词典 =============
all_tokens = []
for tokens in cleaned_sentences:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山海青风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值