跟着小K开始零基础Python量化分析之旅 5: 闯荡量化江湖 —— 回测框架初体验

第五章:闯荡量化江湖 —— 回测框架初体验

在小K初步掌握了那条神秘的均线策略后,他的心中燃起了一个疑问:策略到底好不好?在充满传说的量化江湖里,只有经历过“照妖镜”——回测,才能看清策略的真面目。就在一个风和日丽的午后,小K下定决心亲自上阵,用自己的代码迎战历史数据,让数据为他揭示真相。今天,我们就跟着小K一步一步实现一个简单的回测框架,从数据生成、策略信号、模拟交易到图表展示,全程演示如何检验均线策略的威力。


故事情境

那天,小K像一位初出茅庐的侠客,面对着一座庞大而神秘的数据山。他记得前辈语重心长地说:“回测,是每个量化高手的试金石,是检验你武功高低的照妖镜。”这句话仿佛一道闪电击中了小K的心,让他迫不及待地想要一试身手。他打开电脑,决心用代码模拟一场“历史对决”,验证自己的均线策略是否能在市场上立足。


主要内容与完整演示

下面的代码将带你一步步构建回测框架。我们将从生成模拟数据开始,计算移动平均线,产生买卖信号,执行交易模拟,并最终绘制出价格走势和净值曲线。你可以直接复制下面的代码,在 Jupyter Notebook 或 Python 脚本中运行,亲自体验量化回测的乐趣!

1. 环境准备与数据生成

我们首先生成一份模拟的股票历史数据,这里采用随机漫步(Random Walk)的方式构造价格序列。代码中使用了 Pandas、NumPy 和 Matplotlib 库,请确保已安装这些依赖。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 设置随机种子,确保结果可重复
np.random.seed(42)

# 生成500个交易日的模拟数据(以2022年1月1日为起点,按工作日生成)
dates = pd.date_range(start="2022-01-01", periods=500, freq='B')
# 模拟价格:从100起步,价格每天以正态分布的涨跌累积变化
prices = 100 + np.cumsum(np.random.normal(0, 1, size=len(dates)))

# 构造DataFrame
df = pd.DataFrame({
   "date": dates, "close": prices})
df.set_index("date", inplace=True)

# 显示数据前5行
print("模拟数据预览:")
print(df.head())

演示数据示例:
在这里插入图片描述

2. 计算移动平均线与生成买卖信号

接下来,我们计算两个常用的移动平均线:短期均线(5日)和长期均线(20日),并以此产生买入和卖出信号。基本思路是:当短期均线上穿长期均线时买入,当短期均线下穿长期均线时卖出。

# 计算5日和20日简单移动平均线(SMA)
df["MA5"] = df["close"].rolling(window=5).mean()
df["MA20"] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山海青风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值