【论文】Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience

本文探讨了如何通过学习优化模拟环境中的动力学参数分布,以更好地匹配真实环境,降低Sim-to-Real差距。传统参数随机化方法在确定参数范围和选择上存在问题,而本文提出的方法利用少量真实世界数据来调整模拟参数分布,以适应真实环境。实验表明,这种方法能显著提高机器人任务的性能,如操纵物体和开抽屉,对比标准领域随机化方法,其对参数方差的敏感度较低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

本文主要介绍了对机器手臂动力学参数的分布进行学习,能更有效率的适应真实环境,从而缩小sim to real gap。论文原址:

Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience

sim to real 问题在强化学习中被广泛研究,目前主要有以下几种研究方向:系统辨识(system identification)、领域适应(domain adaption)、参数随机化(parameters randomization)、元强化学习(meta-rl learning)。本文主要是对传统的参数随机化方法进行改进。作者认为可以使用一小部分的真实环境的数据来优化模拟环境的参数分布,从而使得模拟环境能够更好的 match 真实环境,这样训练出来的策略就更好。

传统的参数随机化

传统的参数随机化可以OpenAI这篇论文,(有钱、有设备、有技术做的东西就是不一样。

主要思想就是我有一个prior知识——对目标环境(真实环

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唯与痴想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值