【论文】Active Domain Randomizatio

在这里插入图片描述
这篇论文是在传统的领域随机化(DR-Domain Randomization)的基础上提出的一篇改进论文,提出传统的领域随机化可能会导致次优的、高方差的策略,归因于对环境参数的均匀采样。

本文的方法通过利用随机化和参考化环境实例中策略推出的差异,在给定的随机化范围内寻找信息量最大的环境变化。

简介

本文的应用场景是 zero-shot 迁移,也就是说对目标域完全不可知。本文的方法将DR作为对随机环境的搜索,以最大化代理策略的效用。具体来说,我们的目标是找到目前对代理策略造成困难的环境,将更多的训练时间用于这些麻烦的参数设置。Stein Variational Policy GradientS - VPG学习问题。

算法

SVPG

SVPG是由Liu等人提出的强化学习算法,他的目标是迭代地学习N个策略
在这里插入图片描述
更新的方法利用下式,其中第一项将策略导向更高奖赏的空间,第二项将鼓励探索。
在这里插入图片描述

领域随机化

通常DR需要 N_rand 个需要随机化的模拟环境的参数,那么这些参数就组成随机参数空间:
在这里插入图片描述
每个参数都是从一个分布中采样得到,例如一个均匀采样:
在这里插入图片描述
通过采样每一个参数,最终会得到一系列 MDPs,这些MDPs表面上很相似,但在任务难度上可能差异很大。通过得到一组随机化参数的模拟环境,我们可以将目标环境看作这些模拟环境中的一个变种。

算法

作者从一个简单的任务入手,来说明从一个设定的均匀分布中采样生成的MDPs不一定都有用。

LunarLander-v2 是一个月球降落器的模拟任务,希望 agent 能够使用尽可能少的燃料、尽可能小的速度平稳降落。它只有一个连续动作——主引擎强度(MES)。作者将MES的范围设定在 [8, 20],通过实验发现越低的 MES 生成的 MDPs 越难解决。

从这个简单任务看到,与均匀采样整个空间相比,关注更难的mdp可以提高泛化,即使评估环境在训练分布之外。

(感觉这篇论文讲的不清楚,大致意思是想要在源域中搜索参数空间,然后找到较难解决的(harder MDPs)参数空间进行学习,这样就能更好地泛化到目标域(难的都学到了,简单的肯定也会)。
(主要是本文的代码给的很全,具有较高的借鉴价值。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唯与痴想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值