线性代数系列(五)--线性相关性

主要内容

  • 向量组的线性相关性,零向量与任何向量都是线性相关的。又可以从零空间的角度理解。或者可以从秩的角度理解(为什么存在自由变量就一定有解)
  • 生成空间,对于向量组而言的
  • 基和维数,向量空间的基,满足的性质,基向量的个数。
  • 基的个数,矩阵的秩,空间的维数

正文

向量组的线性相关性

首先要明确一点,线性相关性是只针对向量组而言的。在前面的文章中,已经大致的涉及到了线性相关性的概念,其实,本质上还是考虑的线性组合。给定一个向量组 V V V,如果除了零向量以外,不存在一组非零的系数向量使得向量组 V V V的线性组合为零向量,那么这个向量组 V V V中的向量就是线性无关的。线性无关的数学表达如下: c 1 v 1 + c 2 v 2 + c 3 v 3 + . . . . + c n v n = 0 , o n l y C = 0 c_1v_1+c_2v_2+c_3v_3+....+c_nv_n=0,only\quad C=0 c1v1+c2v2+c3v3+....+cnvn=0onlyC=0如果存在一组非零的系数 C C C,使得他们线性组合得到零向量,说明向量组 V V V中的一些向量可以通过其他向量的线性组合表示出来。这些东西在教材上都有,这里简单的提一下。

上面是线性组合的角度,这里再从空间的角度来看一下。例如: V C = 0 , o n l y C = 0 VC=0,only\quad C=0 VC=0onlyC=0上面的这种形式就是我们找零空间的形式。找到所有 C C C使得上面的方程成立,但是在线性无关的情况下,只有当 C = 0 C=0 C=0的时候才会成立,也就是零空间中只有零向量0。当线性相关的时候,那么存在其他的非零系数使得 V C = 0 VC=0 VC=0,这时零空间中就不仅仅是零向量了。

再从矩阵的秩上来看一下,对于向量组 V V V组成的矩阵 A m ∗ n A_{m*n} Amn,列向量都是线性无关的,那么当我们将这个矩阵 A A A化成简化的行阶梯形矩阵时,会发现每一列都有主元,也就是说 r = n r=n r=n,这就是列满秩的情况,在前面提到过列满秩只可能出现在 m ≥ n m\ge n mn的情况下。当线性相关的时候,显然向量组中可以被线性组合表示的列向量不会含有主元,这时候就会出现 r ≤ n r\le n rn,也就是含有自由变量。

生成空间

实际上,已经见过生成空间,系数矩阵的列空间就是一个生成空间,不过生成空间是一个更加严谨的概念,它仅仅是针对向量组而言的,那么我们也可以更严谨一些,说:系数矩阵所包含的向量组生成的列空间。不过,对于这种严谨的说法,我们知道就可以了,习惯上还是使用通俗的说法。

列空间表示系数矩阵中向量组的所有线性组合所组成的集合。而生成空间也就这么一种线性组合的概念,它表示由向量组的所有线性组合所组成的集合。不管这个向量组是线性相关还是线性无关。

基和维数

维数是比较常见的概念了,我们日常经常提到的有三维空间,二维空间,所谓维数就是指维度的一个度量。一般使用2,3维的较多。实际上,在线性代数中,我们可以扩展到n维空间。只不过,不能够可视化n维空间,但是可以量化。比如 R n R^n Rn,就表示n维空间。

基,我们可以想到一个词基底,像盖一个大楼,对于这个大楼空间而言,基就是这个大楼空间的框架。通过在这个框架上继续搭建,我们可以得到这个完整的大楼。在生成空间中我们只关心向量组所有的线性组合,而不关心向量组是线性无关还是线性相关。当生成空间的这个向量组都线性无关的时候,这个向量组就可以被称为生成空间的基。由此我们可以知道基是一个向量组,并且基的两个性质:1、向量组线性无关,2、向量组可以生成整个空间。

我们可以例举集合常见的基组成的矩阵: A = [ 1 0 0 1 ] B = [ 1 0 0 0 1 0 0 0 1 ] A=\begin{bmatrix}1&0\\0&1\end{bmatrix}\qquad\qquad B=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix} A=[1001]B=100010001 A A A是二维空间中的基, B B B是三维空间中的基。我们可以发现,它们都方阵。我们可以通俗的分析分析,对于 n n n维空间,其中的任意一个向量必然有 n n n个分量,那么基也不例外,既然其中任何一个向量有 n n n个分量,那么空间就有 n n n个方向,为了保证能够在这 n n n个方向上都能够生成(或者是线性组合得到的向量在 n n n个方向上都有分量),这就需要有 n n n个线性无关的列向量。至此,我们可以得到:对于 R n R_n Rn(即 n n n维空间),基组成的矩阵应该是 n × n n\times n n×n的方阵;基中向量的分量的个数、基中向量的个数与空间的维数是相等的,是密切相关的。不过需要注意的一点是:基所组成的矩阵并不一定是方阵,这是由系数矩阵的列空间所决定的。

前面分析了列空间,这里分析一下零空间,将零空间中的列向量作为系数,对系数矩阵中的列向量进行线性组合那么得到的结果恒为0,也就是系数矩阵中的列向量线性相关,那么我们可以认为,零空间告诉我们怎么才能使得系数矩阵的列向量线性相关。另外,还需要注意的就是零空间的维数,空间的维数等于空间的基中列向量的个数,对于零空间也不列外。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值