线性相关 线性无关

matrix 专栏收录该内容
9 篇文章 2 订阅

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

1.线性相关(linearly dependent)与线性无关的(linearly independent)定义

线性相关的定义为:
对于一组向量 v 1 , v 2 , ⋯   , v n v_1, v_2, \cdots, v_n v1,v2,,vn,如果存在一组不全为0的整数 k 1 , k 2 , ⋯   , k n k_1, k_2, \cdots, k_n k1,k2,,kn,使得 k 1 v 1 + k 2 v 2 + ⋯ + k n v n = 0 k_1v_1 + k_2v_2 + \cdots + k_nv_n = 0 k1v1+k2v2++knvn=0成立,那么这组向量是线性相关的。如果只有当 k 1 , k 2 , ⋯   , k n k_1, k_2, \cdots, k_n k1,k2,,kn均为0时等式才成立,该向量组为线性无关的。

2.简单理解

上面的定义不是特别好理解,下面我们换一种更容易理解的方式。
如果有一组不全为0的数,那至少有一个数不为0,假设 k n k_n kn不为0,那么该组向量线性相关。
k 1 v 1 + k 2 v 2 + ⋯ + k n v n = 0 k_1v_1 + k_2v_2 + \cdots + k_nv_n = 0 k1v1+k2v2++knvn=0
可以得知
− k 1 v 1 − k 2 v 2 + − ⋯ − k n − 1 v n − 1 = k n v n -k_1v_1 - k_2v_2 +-\cdots -k_{n-1}v_{n-1} = k_nv_n k1v1k2v2+kn1vn1=knvn

v n = − k 1 k n v 1 − k 2 k n v 2 − ⋯ − k n − 1 k n v n − 1 v_n = -\frac{k_1}{k_n}v_1-\frac{k_2}{k_n}v_2 - \cdots -\frac{k_{n-1}}{k_n}v_{n-1} vn=knk1v1knk2v2knkn1vn1

不难看出, v n v_n vn可以由其他向量的线性组合表示,也就是说这个向量组是线性相关的。

3.实例

再举两个简单例子, v 1 = ( 1 , 0 ) , v 2 = ( 0 , 1 ) v_1 = (1, 0), v_2 = (0, 1) v1=(1,0),v2=(0,1),这就是我们熟悉的笛卡尔坐标系。如果要使得 k 1 v 1 + k 2 v 2 = 0 k_1v_1 + k_2v_2=0 k1v1+k2v2=0,必有 k 1 = k 2 = 0 k_1=k_2=0 k1=k2=0,因此这组向量线性无关。
如果 v 1 = ( 1 , 1 ) , v 2 = ( − 1 , − 1 ) v_1 = (1, 1), v_2 = (-1, -1) v1=(1,1),v2=(1,1),很明显 v 1 + v 2 = 0 v_1 + v_2 = 0 v1+v2=0,此时存在 k 1 = k 2 = 1 k_1 = k_2 = 1 k1=k2=1,使得 k 1 v 1 + k 2 v 2 = 0 k_1v_1 + k_2v_2 = 0 k1v1+k2v2=0,因此这组向量是线性相关的。

4.一些结论

1.当向量组所含向量的个数与向量的维数相等,该向量组线性无关的充要条件为该向量构成的行列式值不为0。
2.由该向量组构成的齐次方程组,如果该其次方程组有非零解,则该向量组线性相关。如果该方程组只有零解,则该向量组线性无关。
3.若向量组的秩等于向量的个数,则该向量组是线性无关。如果秩小于向量的个数,则该向量组线性相关。
4.若向量组所含向量的个数多于向量的维数,该向量组一定线性相关。

  • 3
    点赞
  • 0
    评论
  • 11
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 点我我会动 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值