Educational Codeforces Round 97 (Rated for Div. 2) A B C D

(唉,好久没练怎么这么菜了呀)

A:Marketing Scheme

题意:给一个区间[ l , r ],问是否存在一个a使得[ l , r ]中的每一个数字x,x%a >= x/2 。

思路:明显a取 L 最合适,判断一下即可

B:Reverse Binary Strings

题意:给一个01串保证0的数量等于1的数量。每次操作可以选一段反转,问最少反转多少次可以成为010101...,或者101010...这种串

思路:只有连续为同一个数字的时候才需要反转,而且每次反转只能消除一个连续,最优的做法肯定是成对儿成对的把连续消除掉,所以1的连续对数和0的连续对数,取个max。

C:Chef Monocarp

题意:n个数字,每个数字要对应一个各不相同的数字,代价为abs(a[i] - j )。a[i]为输入数字, j 为对应的数字。

思路:

第一想法肯定是网络流呀,直接建图最小费用最大流走一走,点才600个,复杂度妥妥的。放个建边的代码好了

int n;
scanf("%d",&n);
init(3*n+2);
for(int i=1;i<=n;i++){
   scanf("%d",&a[i]);
   for(int j=1;j<=2*n;j++){
       AddEdge(i,j+n,1,abs(a[i]-j));
   }
   AddEdge(0,i,1,0);
}
for(int i=n+1;i<=3*n;i++){
    AddEdge(i,3*n+1,1,0);
}
int ss = 0,tt = 3*n+1;
int ans=0;
printf("%d\n",Min_cost_max_flow(ss,tt,inf,ans));

第二种做法是DP,dp[i][j]表示第i分钟取完前j个物品的最小代价,考虑转移

  • 如果第j分钟不取东西,dp[i][j]肯定可以从dp[i][j-1]转移而来,表示第j分钟不取任何东西。
  • 如果第j分钟取东西,那么取哪个呢,我们可以想一下假设从1-(i-1)物品里随便取一个,和j匹配,那他原来匹配的值和 i 匹配。这样一定不是最优的,因为假设 a[i]<a[j] ,T[i]>T[j]  有平行四边形不等式可以得知,只有两个小的值匹配,两个大的值匹配才是最优的,所以dp[i][j]一定是从dp[i-1][j-1]转移过来。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int MAXN = 2e5+5;
int a[MAXN];
int dp[405][205];
int main(){
    int t;
    cin>>t;
    while(t--){
        int n;
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>a[i];
        }
        sort(a+1,a+1+n);
        memset(dp,0x3f,sizeof(dp));
        dp[0][0] = 0;
        int ans = 0x3f3f3f3f;
        for(int i=0;i<=n;i++){
            dp[i][0] = 0;
        }
        for(int i=1;i<=2*n;i++){
            for(int j=1;j<=n;j++){
                dp[i][j] = min(dp[i-1][j],dp[i-1][j-1]+abs(a[j]-i));
                if(j == n){
                    ans = min(ans,dp[i][j]);
                }
            }
        }
        cout<<ans<<endl;
    }
}

D: Minimal Height Tree

题目:给一个bfs序,要求每个点的孩子节点编号递增,输出最小深度。

思路:处理出数组的每个递增序列长度,然后模拟着bfs的走法就可以了。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int MAXN = 2e5+5;
int a[MAXN];
int dp[MAXN];
int cnt[MAXN];
int sum[MAXN];
int main(){
    int t;
    cin>>t;
    while(t--){
        int n;
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>a[i];
            dp[i] = 0;
            cnt[i] = 0;
        }
        dp[1] = 1;
        a[n+1] = -1;
        int tot = 0,num = 1;
        for(int i=3;i<=n+1;i++){
            if(a[i]>a[i-1]){
                num++;
            }
            else{
                cnt[++tot] = num;
                num = 1;
            }
        }
        for(int i=1;i<=tot;i++){
            sum[i] = sum[i-1] + cnt[i];
        }
        int root = 1;
        for(int i=1;i<=tot;i++){
            int r = i+dp[root]-1;
            dp[++root] = sum[r]-sum[i-1];
            i = r;
        }
        cout<<root-1<<endl;
    }

}

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页