1.6 Invertible Matrices

可逆矩阵的引入和介绍就很有意思,如果 P P P是一系列初等矩阵的乘积,那么 B = P A B=PA B=PA A A A是row-equivalent的,所以 A A A B B B也是row-equivalent的,故有一个一系列初等矩阵的乘积 Q Q Q使得 A = Q B A=QB A=QB,如果 A = I m A=I_m A=Im,那么就会有 B = P , I m = Q B = Q P B=P,I_m=QB=QP B=P,Im=QB=QP,所以通过 P P P得到了一个 Q Q Q,因而有inverse matrix的概念,inverse可以有左有右,不必同时存在,但如果同时存在,必相等。Theorem 10说明:矩阵的逆矩阵也可逆且逆逆得自身,两个(可推广到有限个)逆矩阵乘积也可逆。Theorem 11则证明初等矩阵是可逆的,其逆矩阵就是单位矩阵在该初等矩阵对应初等行变换的逆变换下的矩阵,计算也很简单。
Theorem 12得出了重要的三个等价关系:可逆、与单位矩阵row-equivalent、是一系列初等矩阵的乘积,其两个重要推论,一是把 A A A变成单位阵的行变换可以同时把 I I I变成 A − 1 A^{-1} A1,二是两矩阵row-equivalent当且仅当一个矩阵等于某可逆阵左乘另一个矩阵(因为可逆阵就是一系列初等矩阵的乘积)。Theorem 13是另一组重要等价关系: A A A可逆、 A X = 0 AX=0 AX=0只有零解、 A X = Y AX=Y AX=Y对每一个 Y Y Y都有解。这两个定理说明了可逆阵的威力。推论一是如果是方阵,那么光有左逆或右逆就代表可逆。推论二是方阵的乘积可逆代表每个方阵均可逆,即Theorem 10在方阵约束下增强了。
这一节最后要说明的两个事,一个是如何用初等行变换或者初等矩阵乘积求逆,另一个是行的事情都可以复制到列上,只是初等矩阵会发生变化,且从左乘变成右乘。

Exercises

1. Let

A = [ 1 2 1 0 − 1 0 3 5 1 − 2 1 1 ] A=\begin{bmatrix}1&2&1&0\\-1&0&3&5\\1&-2&1&1\end{bmatrix} A=111202131051

Find a row-reduced echelon matrix R R R which is row-equivalent to A A A and an invertible 3 × 3 3\times 3 3×3 matrix P P P such that R = P A R=PA R=PA.

solution: We perform row operations on A ′ = [ A Y ] A'=\begin{bmatrix}A&Y\end{bmatrix} A=[AY] with Y = [ y 1 , y 2 , y 3 ] T Y=[y_1,y_2,y_3 ]^T Y=[y1,y2,y3]T, thus
A ′ = [ 1 2 1 0 y 1 − 1 0 3 5 y 2 1 − 2 1 1 y 3 ] → [ 1 2 1 0 y 1 0 2 4 5 y 2 + y 1 0 − 4 0 1 y 3 − y 1 ] → [ 1 2 1 0 y 1 0 2 4 5 y 2 + y 1 0 0 8 11 2 y 2 + y 3 + y 1 ] → [ 1 2 1 0 y 1 0 1 2 5 2 1 2 ( y 2 + y 1 ) 0 0 1 11 8 1 8 ( 2 y 2 + y 3 + y 1 ) ] → [ 1 2 0 − 11 8 7 8 y 1 − 1 4 y 2 − 1 8 y 3 0 1 0 − 1 4 1 4 ( y 1 − y 3 ) 0 0 1 11 8 1 8 ( 2 y 2 + y 3 + y 1 ) ] → [ 1 0 0 − 7 8 3 8 y 1 − 1 4 y 2 + 3 8 y 3 0 1 0 − 1 4 1 4 ( y 1 − y 3 ) 0 0 1 11 8 1 8 ( 2 y 2 + y 3 + y 1 ) ] \begin{aligned}A'&=\begin{bmatrix}1&2&1&0&y_1\\-1&0&3&5&y_2\\1&-2&1&1&y_3 \end{bmatrix}\rightarrow\begin{bmatrix}1&2&1&0&y_1\\0&2&4&5&y_2+y_1\\0&-4&0&1&y_3-y_1 \end{bmatrix}\\&\rightarrow\begin{bmatrix}1&2&1&0&y_1\\0&2&4&5&y_2+y_1\\0&0&8&11&2y_2+y_3+y_1 \end{bmatrix}\rightarrow\begin{bmatrix}1&2&1&0&y_1\\0&1&2&\frac{5}{2}&\frac{1}{2} (y_2+y_1 )\\0&0&1&\frac{11}{8}&\frac{1}{8} (2y_2+y_3+y_1 ) \end{bmatrix}\\&\rightarrow\begin{bmatrix}1&2&0&-\frac{11}{8}&\frac{7}{8} y_1-\frac{1}{4} y_2-\frac{1}{8} y_3\\0&1&0&-\frac{1}{4}&\frac{1}{4} (y_1-y_3 )\\0&0&1&\frac{11}{8}&\frac{1}{8} (2y_2+y_3+y_1 ) \end{bmatrix}\rightarrow\begin{bmatrix}1&0&0&-\frac{7}{8}&\frac{3}{8} y_1-\frac{1}{4} y_2+\frac{3}{8} y_3\\0&1&0&-\frac{1}{4}&\frac{1}{4} (y_1-y_3 )\\0&0&1&\frac{11}{8}&\frac{1}{8}(2y_2+y_3+y_1 )\end{bmatrix}\end{aligned} A=111202131051y1y2y3100224140051y1y2+y1y3y11002201480511y1y2+y12y2+y3+y1100210121025811y121(y2+y1)81(2y2+y3+y1)1002100018114181187y141y281y341(y1y3)81(2y2+y3+y1)100010001874181183y141y2+83y341(y1y3)81(2y2+y3+y1)
thus R = [ 1 0 0 − 7 8 0 1 0 − 1 4 0 0 1 11 8 ] R=\begin{bmatrix}1&0&0&-\frac{7}{8}\\0&1&0&-\frac{1}{4}\\0&0&1&\frac{11}{8}\end{bmatrix} R=10001000187

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值