数据结构:红黑树
1. 红黑树的演变
此部分的思想来自于Sedgewick的《 算法[第四版] 》。参考博客:
https://blog.csdn.net/chen_zhang_yu/article/details/52415077
红黑树的起源是二叉查找树,二叉查找树从根节点开始,左子节点小于它,右子节点大于它。每个节点都符合这个特性,所以易于查找,是一种很好的数据结构。但是它有一个问题,就是容易偏向某一侧,这样就像一个链表结构了,失去了树结构的优点。
2-3树是二叉查找树的变种,树中的2和3代表两种节点,以下表示为2-节点和3-节点。
- 2-节点即普通节点:包含一个元素,两条子链接。
- 3-节点则是扩充版,包含2个元素和三条链接:两个元素A、B,左边的链接指向小于A的节点,中间的链接指向介于A、B值之间的节点,右边的链接指向大于B的节点。
一颗完美平衡的2-3查找树中的所有空链接到根结点的距离都是相同的。
下面来看2-3树的构造过程,和标准的二叉查找树由上向下生长不同,2-3树的生长是由下向上的。
- 如果将值插入一个2-节点,则将2-节点扩充为一个3-节点。
- 如果将值插入一个3-节点,分为以下几种情况。
- 3-节点没有父节点,即整棵树就只有它一个三节点。此时,将3-节点扩充为一个4-节点,即包含三个元素的节点,然后将其分解,变成一棵二叉树。
- 3-节点有一个2-节点的父节点,此时的操作是,3-节点扩充为4-节点,然后分解4-节点,然后将分解后的新树的父节点融入到2-节点的父节点中去
- 3-节点有一个3-节点的父节点,此时操作是:3-节点扩充为4-节点,然后分解4-节点,新树父节点向上融合,上面的3-节点继续扩充,融合,分解,新树继续向上融合,直到父节点为2-节点为止,如果向上到根节点都是3-节点,将根节点扩充为4-节点,然后分解为新树,至此,整个树增加一层,仍然保持平衡。
将{7,8,9,10,11,12}中的数值依次插入2-3树,画出它的过程:
将这种直白的表述写成代码实现起来并不方便,因为要处理的情况太多。这样需要维护两种不同类型的节点,将链接和其他信息从一个节点复制到另一个节点,将节点从一种类型转换为另一种类型等等。
因此,红黑树出现了,红黑树的背后逻辑就是2-3树。但是由于用红黑作为标记这个小技巧,最后实现的代码量并不大。
我们来看看红黑树和2-3树的关联,首先是红和黑的含义。红黑树中,所有的节点都是标准的2-节点,为了体现出3-节点,这里将3-节点的两个元素用左斜红色的链接连接起来,即连接了两个2-节点来表示一个3-节点。这里红色节点标记就代表指向其的链接是红链接,黑色标记的节点就是普通的节点。红色节点是可以与其父节点合并为一个3-节点的,红黑树实现的其实是一个完美的黑色平衡,如果你将红黑树中所有的红色链接放平,那么它所有的叶子节点到根节点的距离都是相同的。所以它并不是一个严格的平衡二叉树,但是它的综合性能已经很优秀了。
红链接放平:
所以,红黑树的一种定义是满足下列条件的二叉查找树:
- 红链接均为左链接。
- 没有任何一个结点同时和两条红链接相连。(这样会出现4-节点)
- 该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同。
注意:该定义来自Sedgewick的《 算法[第四版] 》,这里的红黑树为左倾红黑树,Java实现的红黑树中,左右链接均可为红链接(可与2-3-4树对应)。
2. 红黑树的性质
《算法导论》对R-B Tree的介绍:
红黑树,一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。
通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其
他路径长出俩倍,因而是接近平衡的。
红黑树,满足以下性质(即只有满足以下全部性质的树,我们才称之为红黑树):
1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。
3. 红黑树的实现
动画模拟网站:https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
3.1 HashMap中的红黑树
3.1.1 TreeNode的结构
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
//省略后续代码
TreeNode继承自LinkedHashMap中的内部类——LinkedHashMap.Entry,而这个内部类又继承自Node。我们再来看看它的几个属性,parent用来指向它的父节点,left指向左孩子,right指向右孩子,prev则指向前一个节点(原链表中的前一个节点),注意,这些字段跟Entry,Node中的字段一样,是使用默认访问权限的,所以子类可以直接使用父类的属性。
3.1.2 treeify() & untreeify()
/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
//这里其实是将单链表转化成了双向链表,tl是p的前驱,每次循环更新指向双链表的最后一个元素,用来和p相连,p是当前节点
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
在treeifyBin函数中,先将所有节点替换为TreeNode,然后再将单链表转为双链表,方便之后的遍历和移动操作。而最终的操作,实际上是调用TreeNode的方法treeify进行的。
final void treeify(Node<K,V>[] tab) {
//树的根节点
TreeNode<K,V> root = null;
//x是当前节点,next是后继
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
//如果根节点为null,把当前节点设置为根节点
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
//这里循环遍历,进行二叉搜索树的插入
for (TreeNode<K,V> p = root;;) {
//p指向遍历中的当前节点,x为待插入节点,k是x的key,h是x的hash值,ph是p的hash值,dir用来指示x节点与p的比较,-1表示比p小,1表示比p大,不存在相等情况,因为HashMap中是不存在两个key完全一致的情况。
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
//如果hash值相等,那么判断k是否实现了comparable接口,如果实现了comparable接口就使用compareTo进行进行比较,如果仍旧相等或者没有实现comparable接口,则在tieBreakOrder中比较
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
//进行插入平衡处理
root = balanceInsertion(root, x);
break;
}
}
}
}
//确保给定节点是桶中的第一个元素
moveRootToFront(tab, root);
}
//这里不是为了整体排序,而是为了在插入中保持一致的顺序
static int tieBreakOrder(Object a, Object b) {
int d;
//用两者的类名进行比较,如果相同则使用对象默认的hashcode进行比较
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
循环遍历当前树,然后找到可以该节点可以插入的位置,依次和遍历节点比较,比它大则跟其右孩子比较,小则与其左孩子比较,依次遍历,直到找到左孩子或者右孩子为null的位置进行插入。
moveRootToFront()函数是将root节点移动到桶中的第一个元素,也就是链表的首节点,这样做是因为在判断桶中元素类型的时候会对链表进行遍历,将根节点移动到链表前端可以确保类型判断时不会出现错误。
/**
* 把给定节点设为桶中的第一个元素
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
//first指向链表第一个节点
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
if (root != first) {
//如果root不是第一个节点,则将root放到第一个首节点位置
Node<K,V> rn;
tab[index] = root;
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
//这里是防御性编程,校验更改后的结构是否满足红黑树和双链表的特性
//因为HashMap并没有做并发安全处理,可能在并发场景中意外破坏了结构
assert checkInvariants(root);
}
}
untreeify()源码:
/**
* Returns a list of non-TreeNodes replacing those linked from
* this node.
*/
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
for (Node<K,V> q = this; q != null; q = q.next) {
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
3.1.3 split()
/**
* Splits nodes in a tree bin into lower and upper tree bins,
* or untreeifies if now too small. Called only from resize;
* see above discussion about split bits and indices.
*
* @param map the map
* @param tab the table for recording bin heads
* @param index the index of the table being split
* @param bit the bit of hash to split on
*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
3.1 左旋与右旋
左旋:左旋结点E,就是让E去做它的右孩子(S)的左孩子,如果S有左孩子,则让这个左孩子去做E的右孩子。
右旋:左旋结点S,就是让S去做它的左孩子(E)的右孩子,如果E有右孩子,则让这个右孩子去做S的左孩子。
左旋的代码实现:
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {//如果p不为空且p有右孩子r
if ((rl = p.right = r.left) != null)//如果r的左孩子不为空,让他去做p的右孩子
rl.parent = p;
if ((pp = r.parent = p.parent) == null)//让p的父亲做r的父亲,如果p的父亲为空
(root = r).red = false;//r为根节点,变黑
else if (pp.left == p)//如果p是左孩子
pp.left = r;
else//如果p是右孩子
pp.right = r;
r.left = p;//将p置为r的左孩子
p.parent = r;//将r置为p的父亲
}
return root;
}
右旋的代码实现:
//与左旋类似,不做分析
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
3.2 红黑树的插入
插入分如下几种情况:
- 插入的为根节点,则直接把颜色改成黑色即可。
- 插入的节点的父节点是黑色节点,则不需要调整,因为插入的节点会初始化为红色节点,红色节点是不会影响树的平衡的。
- 插入的节点的祖父节点为null,即插入的节点的父节点是根节点,直接插入即可(因为根节点肯定是黑色)。
- 插入的节点父节点和祖父节点都存在,并且其父节点是祖父节点的左节点。这种情况稍微麻烦一点,又分两种子情况:
i. 插入节点的叔叔节点是红色,则将父亲节点和叔叔节点都改成黑色,然后祖父节点改成红色即可。
ii. 插入节点的叔叔节点是黑色或不存在:
a.若插入节点是其父节点的右孩子,则将其父节点左旋,
b.若为左孩子,则将其父节点变成黑色节点,将其祖父节点变成红色节点,然后将其祖父节点右旋。 - 插入的节点父节点和祖父节点都存在,并且其父节点是祖父节点的右节点。这种情况跟上面是类似的,分两种子情况:
i.插入节点的叔叔节点是红色,则将父亲节点和叔叔节点都改成黑色,然后祖父节点改成红色即可。
ii.插入节点的叔叔节点是黑色或不存在:
a.若插入节点是其父节点的左孩子,则将其父节点右旋
b.若为右孩子,则将其父节点变成黑色节点,将其祖父节点变成红色节点,然后将其祖父节点左旋。
重复进行上述操作,直到变成1或2情况时则结束变换。下面从无到有构建一颗红黑树,假设插入的顺序为:10,5,9,3,6,7,19,32,24,17。
首先10,为情景1,直接改成黑色即可,再插入5,为情景2,比10小,放到10的左孩子位置,插入9,比10小,但是比5大,放到5的右孩子位置,此时,为情景4iia,左旋后变成了情景4iib,变色右旋即可完成转化。插入3后为情景4i,将父节点和叔叔节点同时变色即可,插入6不需要调整,插入7后为情景5i,变色即可。插入19不需要调整,插入32,变成了5iib,左旋变色即可,插入24,变成5iia,右旋后变成5i,变色即可,最后插入17。
插入的代码实现:
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
//情景1:父节点为null
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
//情景2,3:父节点是黑色节点或者祖父节点为null
else if (!xp.red || (xpp = xp.parent) == null)
return root;
//情景4:插入的节点父节点和祖父节点都存在,并且其父节点是祖父节点的左节点
if (xp == (xppl = xpp.left)) {
//情景4i:插入节点的叔叔节点是红色
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
//情景4ii:插入节点的叔叔节点是黑色或不存在
else {
//情景4iia:插入节点是其父节点的右孩子
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
//情景4iib:插入节点是其父节点的左孩子
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
//情景5:插入的节点父节点和祖父节点都存在,并且其父节点是祖父节点的右节点
else {
//情景5i:插入节点的叔叔节点是红色
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
//情景5ii:插入节点的叔叔节点是黑色或不存在
else {
· //情景5iia:插入节点是其父节点的左孩子
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
//情景5iib:插入节点是其父节点的右孩子
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
3.3 红黑树的删除
这里分为两部分内容:1.二叉搜索树的删除,2.红黑树的删除调整。
二叉搜索树的删除主要有这么几种情景:
- 待删除的节点无左右孩子。
- 待删除的节点只有左孩子或者右孩子。
- 待删除的节点既有左孩子又有右孩子。
对于情景1,直接删除即可,情景2,则直接把该节点的父节点指向它的左孩子或者右孩子即可,情景3稍微复杂一点,需要先找到其右子树的最左孩子(或者左子树的最右孩子),即左(右)子树中序遍历时的第一个节点,然后将其与待删除的节点互换,最后再删除该节点(如果有右子树,则右子树上位)。总之,就是先找到它的替代者,找到之后替换这个要删除的节点,然后再把这个节点真正删除掉。
删除完之后,如果替代者是红色节点,则不需要调整,如果是黑色节点,则会导致左子树和右子树路径中黑色节点数量不一致,需要进行红黑树的调整,跟上面一样,替代节点为其父节点的左孩子与右孩子的情况类似,所以这里只说其为左孩子的情景(PS:上一步的寻找替换节点使用的是右子树的最左节点,所以该节点如果有孩子,只能是右孩子):
情景1:只有右孩子且为红色,直接用右孩子替换该节点然后变成黑色即可。
情景2:只有右孩子且为黑色,那么删除该节点会导致父节点的左子树路径上黑色节点减一,此时只能去借助右子树,从右子树中借一个红色节点过来即可,具体取决于右子树的情况,这里又分成两种:
i.兄弟节点是红色,则此时父节点是黑色,且兄弟节点肯定有两个孩子,且兄弟节点的左右子树路径上均有两个黑色节点,此时只需将兄弟节点与父节点颜色互换,然后将父节点左旋,左旋后,兄弟节点的左子树SL挂到了父节点p的右孩子位置,这时会导致p的右子树路径上的黑色节点比左子树多一,此时再SL置为红色即可。
ii.兄弟节点是黑色,那么就只能打它孩子的主意了,这里主要关注远侄子(兄弟节点的右孩子,即SR)的颜色情况,这里分成两种情况:
a.远侄子SR是黑色,近侄子任意(白色代表颜色可为任意颜色),则先将S转为红色,然后右旋,再将SL换成P节点颜色,P涂成黑色,S也涂成黑色,再进行左旋即可。其实简单说就是SL上位,替换父节点位置。
b.远侄子SR为红色,近侄子任意(该子树路径中有且仅有一个黑色节点),则先将兄弟节点与父节点颜色互换,将SR涂成黑色,再将父节点左旋即可。
删除的代码实现:
- 二叉搜索树的删除,
/**
* Removes the given node, that must be present before this call.
* This is messier than typical red-black deletion code because we
* cannot swap the contents of an interior node with a leaf
* successor that is pinned by "next" pointers that are accessible
* independently during traversal. So instead we swap the tree
* linkages. If the current tree appears to have too few nodes,
* the bin is converted back to a plain bin. (The test triggers
* somewhere between 2 and 6 nodes, depending on tree structure).
*/
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab, boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
if (root.parent != null)
root = root.root();
if (root == null || root.right == null ||
(rl = root.left) == null || rl.left == null) {
tab[index] = first.untreeify(map); // too small
return;
}
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
//p是待删除节点,replacement用于后续的红黑树调整,指向的是p或者p的继承者。
//如果p是叶子节点,p==replacement,否则replacement为p的右子树中最左节点
if (replacement != p) {
//若p不是叶子节点,则让replacement的父节点指向p的父节点
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
//若待删除的节点p时红色的,则树平衡未被破坏,无需进行调整。
//否则删除节点后需要进行调整
TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
//p为叶子节点,则直接将p从树中清除
if (replacement == p) { // detach
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
- 红黑树的删除调整。
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
//x为空或x为根节点,直接返回
if (x == null || x == root)
return root;
//x为根节点,染成黑色,直接返回(因为调整过后,root并不一定指向删除操作过后的根节点,如果之前删除的是root节点,则x将成为新的根节点)
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
//如果x为红色,则无需调整,返回
else if (x.red) {
x.red = false;
return root;
}
//x为其父节点的左孩子
else if ((xpl = xp.left) == x) {
//如果它有红色的兄弟节点xpr,那么它的父亲节点xp一定是黑色节点
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
//对父节点xp做左旋转
root = rotateLeft(root, xp);
//重新将xp指向x的父节点,xpr指向xp新的右孩子
xpr = (xp = x.parent) == null ? null : xp.right;
}
//如果xpr为空,则向上继续调整,将x的父节点xp作为新的x继续循环
if (xpr == null)
x = xp;
else {
//sl和sr分别为其近侄子和远侄子
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true; //若sl和sr都为黑色或者不存在,即xpr没有红色孩子,则将xpr染红
x = xp; //本轮结束,继续向上循环
}
else {
//否则的话,就需要进一步调整
if (sr == null || !sr.red) {
if (sl != null) //若左孩子为红,右孩子不存在或为黑
sl.red = false; //左孩子染黑
xpr.red = true; //将xpr染红
root = rotateRight(root, xpr); //右旋
xpr = (xp = x.parent) == null ?
null : xp.right; //右旋后,xpr指向xp的新右孩子,即上一步中的sl
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red; //xpr染成跟父节点一致的颜色,为后面父节点xp的左旋做准备
if ((sr = xpr.right) != null)
sr.red = false; //xpr新的右孩子染黑,防止出现两个红色相连
}
if (xp != null) {
xp.red = false; //将xp染黑,并对其左旋,这样就能保证被删除的X所在的路径又多了一个黑色节点,从而达到恢复平衡的目的
root = rotateLeft(root, xp);
}
//到此调整已经完毕,进入下一次循环后将直接退出
x = root;
}
}
}
//x为其父节点的右孩子,跟上面类似
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}