[Java集合]Map源码分析:HashMap红黑树解析

1. 红黑树的演变

此部分的思想来自于Sedgewick的《 算法[第四版] 》。参考博客:
https://blog.csdn.net/chen_zhang_yu/article/details/52415077

红黑树的起源是二叉查找树,二叉查找树从根节点开始,左子节点小于它,右子节点大于它。每个节点都符合这个特性,所以易于查找,是一种很好的数据结构。但是它有一个问题,就是容易偏向某一侧,这样就像一个链表结构了,失去了树结构的优点。
2-3树是二叉查找树的变种,树中的2和3代表两种节点,以下表示为2-节点和3-节点。

  • 2-节点即普通节点:包含一个元素,两条子链接。
  • 3-节点则是扩充版,包含2个元素和三条链接:两个元素A、B,左边的链接指向小于A的节点,中间的链接指向介于A、B值之间的节点,右边的链接指向大于B的节点。


一颗完美平衡的2-3查找树中的所有空链接到根结点的距离都是相同的。
下面来看2-3树的构造过程,和标准的二叉查找树由上向下生长不同,2-3树的生长是由下向上的。

  • 如果将值插入一个2-节点,则将2-节点扩充为一个3-节点。
  • 如果将值插入一个3-节点,分为以下几种情况。
  1. 3-节点没有父节点,即整棵树就只有它一个三节点。此时,将3-节点扩充为一个4-节点,即包含三个元素的节点,然后将其分解,变成一棵二叉树。
  2. 3-节点有一个2-节点的父节点,此时的操作是,3-节点扩充为4-节点,然后分解4-节点,然后将分解后的新树的父节点融入到2-节点的父节点中去
  3. 3-节点有一个3-节点的父节点,此时操作是:3-节点扩充为4-节点,然后分解4-节点,新树父节点向上融合,上面的3-节点继续扩充,融合,分解,新树继续向上融合,直到父节点为2-节点为止,如果向上到根节点都是3-节点,将根节点扩充为4-节点,然后分解为新树,至此,整个树增加一层,仍然保持平衡。
    将{7,8,9,10,11,12}中的数值依次插入2-3树,画出它的过程:

将这种直白的表述写成代码实现起来并不方便,因为要处理的情况太多。这样需要维护两种不同类型的节点,将链接和其他信息从一个节点复制到另一个节点,将节点从一种类型转换为另一种类型等等。
因此,红黑树出现了,红黑树的背后逻辑就是2-3树。但是由于用红黑作为标记这个小技巧,最后实现的代码量并不大。
我们来看看红黑树和2-3树的关联,首先是红和黑的含义。红黑树中,所有的节点都是标准的2-节点,为了体现出3-节点,这里将3-节点的两个元素用左斜红色的链接连接起来,即连接了两个2-节点来表示一个3-节点。这里红色节点标记就代表指向其的链接是红链接,黑色标记的节点就是普通的节点。红色节点是可以与其父节点合并为一个3-节点的,红黑树实现的其实是一个完美的黑色平衡,如果你将红黑树中所有的红色链接放平,那么它所有的叶子节点到根节点的距离都是相同的。所以它并不是一个严格的平衡二叉树,但是它的综合性能已经很优秀了。

红链接放平:

所以,红黑树的一种定义是满足下列条件的二叉查找树:

  1. 红链接均为左链接。
  2. 没有任何一个结点同时和两条红链接相连。(这样会出现4-节点)
  3. 该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同。

注意:该定义来自Sedgewick的《 算法[第四版] 》,这里的红黑树为左倾红黑树,Java实现的红黑树中,左右链接均可为红链接(可与2-3-4树对应)。

2. 红黑树的性质

《算法导论》对R-B Tree的介绍:
红黑树,一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。
通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其
他路径长出俩倍,因而是接近平衡的。
红黑树,满足以下性质(即只有满足以下全部性质的树,我们才称之为红黑树):

1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。

3. 红黑树的实现

动画模拟网站:https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

3.1 HashMap中的红黑树

3.1.1 TreeNode的结构

 static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
//省略后续代码

TreeNode继承自LinkedHashMap中的内部类——LinkedHashMap.Entry,而这个内部类又继承自Node。我们再来看看它的几个属性,parent用来指向它的父节点,left指向左孩子,right指向右孩子,prev则指向前一个节点(原链表中的前一个节点),注意,这些字段跟Entry,Node中的字段一样,是使用默认访问权限的,所以子类可以直接使用父类的属性。

3.1.2 treeify() & untreeify()

 /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                //这里其实是将单链表转化成了双向链表,tl是p的前驱,每次循环更新指向双链表的最后一个元素,用来和p相连,p是当前节点
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

在treeifyBin函数中,先将所有节点替换为TreeNode,然后再将单链表转为双链表,方便之后的遍历和移动操作。而最终的操作,实际上是调用TreeNode的方法treeify进行的。

final void treeify(Node<K,V>[] tab) {
            //树的根节点
            TreeNode<K,V> root = null;
            //x是当前节点,next是后继
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                //如果根节点为null,把当前节点设置为根节点
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    //这里循环遍历,进行二叉搜索树的插入
                    for (TreeNode<K,V> p = root;;) {
                        //p指向遍历中的当前节点,x为待插入节点,k是x的key,h是x的hash值,ph是p的hash值,dir用来指示x节点与p的比较,-1表示比p小,1表示比p大,不存在相等情况,因为HashMap中是不存在两个key完全一致的情况。
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        //如果hash值相等,那么判断k是否实现了comparable接口,如果实现了comparable接口就使用compareTo进行进行比较,如果仍旧相等或者没有实现comparable接口,则在tieBreakOrder中比较
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);
 
                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                 //进行插入平衡处理
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
       //确保给定节点是桶中的第一个元素
            moveRootToFront(tab, root);
        }    
     //这里不是为了整体排序,而是为了在插入中保持一致的顺序
     static int tieBreakOrder(Object a, Object b) {
            int d;
            //用两者的类名进行比较,如果相同则使用对象默认的hashcode进行比较
            if (a == null || b == null ||
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }  

循环遍历当前树,然后找到可以该节点可以插入的位置,依次和遍历节点比较,比它大则跟其右孩子比较,小则与其左孩子比较,依次遍历,直到找到左孩子或者右孩子为null的位置进行插入。

moveRootToFront()函数是将root节点移动到桶中的第一个元素,也就是链表的首节点,这样做是因为在判断桶中元素类型的时候会对链表进行遍历,将根节点移动到链表前端可以确保类型判断时不会出现错误。


/**
 * 把给定节点设为桶中的第一个元素
 */        
    static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                //first指向链表第一个节点
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                if (root != first) {
                    //如果root不是第一个节点,则将root放到第一个首节点位置
                    Node<K,V> rn;
                    tab[index] = root;
                    TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                //这里是防御性编程,校验更改后的结构是否满足红黑树和双链表的特性
                //因为HashMap并没有做并发安全处理,可能在并发场景中意外破坏了结构
                assert checkInvariants(root);
            }
        }  

untreeify()源码:

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

3.1.3 split()

/**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

3.1 左旋与右旋

左旋:左旋结点E,就是让E去做它的右孩子(S)的左孩子,如果S有左孩子,则让这个左孩子去做E的右孩子。
右旋:左旋结点S,就是让S去做它的左孩子(E)的右孩子,如果E有右孩子,则让这个右孩子去做S的左孩子。

在这里插入图片描述
左旋的代码实现:

static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {//如果p不为空且p有右孩子r
                if ((rl = p.right = r.left) != null)//如果r的左孩子不为空,让他去做p的右孩子
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)//让p的父亲做r的父亲,如果p的父亲为空
                    (root = r).red = false;//r为根节点,变黑
                else if (pp.left == p)//如果p是左孩子
                    pp.left = r;
                else//如果p是右孩子
                    pp.right = r;
                r.left = p;//将p置为r的左孩子
                p.parent = r;//将r置为p的父亲
            }
            return root;
        }

右旋的代码实现:

//与左旋类似,不做分析
 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                               TreeNode<K,V> p) {
            TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

3.2 红黑树的插入

插入分如下几种情况:

  1. 插入的为根节点,则直接把颜色改成黑色即可。
  2. 插入的节点的父节点是黑色节点,则不需要调整,因为插入的节点会初始化为红色节点,红色节点是不会影响树的平衡的。
  3. 插入的节点的祖父节点为null,即插入的节点的父节点是根节点,直接插入即可(因为根节点肯定是黑色)。
  4. 插入的节点父节点和祖父节点都存在,并且其父节点是祖父节点的左节点。这种情况稍微麻烦一点,又分两种子情况:
    i. 插入节点的叔叔节点是红色,则将父亲节点和叔叔节点都改成黑色,然后祖父节点改成红色即可。
    ii. 插入节点的叔叔节点是黑色或不存在:
     a.若插入节点是其父节点的右孩子,则将其父节点左旋,
     b.若为左孩子,则将其父节点变成黑色节点,将其祖父节点变成红色节点,然后将其祖父节点右旋。
  5. 插入的节点父节点和祖父节点都存在,并且其父节点是祖父节点的右节点。这种情况跟上面是类似的,分两种子情况:
    i.插入节点的叔叔节点是红色,则将父亲节点和叔叔节点都改成黑色,然后祖父节点改成红色即可。
    ii.插入节点的叔叔节点是黑色或不存在:
     a.若插入节点是其父节点的左孩子,则将其父节点右旋
     b.若为右孩子,则将其父节点变成黑色节点,将其祖父节点变成红色节点,然后将其祖父节点左旋。

重复进行上述操作,直到变成1或2情况时则结束变换。下面从无到有构建一颗红黑树,假设插入的顺序为:10,5,9,3,6,7,19,32,24,17。

首先10,为情景1,直接改成黑色即可,再插入5,为情景2,比10小,放到10的左孩子位置,插入9,比10小,但是比5大,放到5的右孩子位置,此时,为情景4iia,左旋后变成了情景4iib,变色右旋即可完成转化。插入3后为情景4i,将父节点和叔叔节点同时变色即可,插入6不需要调整,插入7后为情景5i,变色即可。插入19不需要调整,插入32,变成了5iib,左旋变色即可,插入24,变成5iia,右旋后变成5i,变色即可,最后插入17。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
插入的代码实现:

 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                //情景1:父节点为null
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
          //情景2,3:父节点是黑色节点或者祖父节点为null
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
          //情景4:插入的节点父节点和祖父节点都存在,并且其父节点是祖父节点的左节点
                if (xp == (xppl = xpp.left)) {
            //情景4i:插入节点的叔叔节点是红色
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
            //情景4ii:插入节点的叔叔节点是黑色或不存在
                    else {
              //情景4iia:插入节点是其父节点的右孩子
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
              //情景4iib:插入节点是其父节点的左孩子
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
          //情景5:插入的节点父节点和祖父节点都存在,并且其父节点是祖父节点的右节点
                else {
            //情景5i:插入节点的叔叔节点是红色
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
            //情景5ii:插入节点的叔叔节点是黑色或不存在
                    else {
·              //情景5iia:插入节点是其父节点的左孩子 
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
              //情景5iib:插入节点是其父节点的右孩子
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

3.3 红黑树的删除

这里分为两部分内容:1.二叉搜索树的删除,2.红黑树的删除调整。
二叉搜索树的删除主要有这么几种情景:

  1. 待删除的节点无左右孩子。
  2. 待删除的节点只有左孩子或者右孩子。
  3. 待删除的节点既有左孩子又有右孩子。

对于情景1,直接删除即可,情景2,则直接把该节点的父节点指向它的左孩子或者右孩子即可,情景3稍微复杂一点,需要先找到其右子树的最左孩子(或者左子树的最右孩子),即左(右)子树中序遍历时的第一个节点,然后将其与待删除的节点互换,最后再删除该节点(如果有右子树,则右子树上位)。总之,就是先找到它的替代者,找到之后替换这个要删除的节点,然后再把这个节点真正删除掉。
  
  删除完之后,如果替代者是红色节点,则不需要调整,如果是黑色节点,则会导致左子树和右子树路径中黑色节点数量不一致,需要进行红黑树的调整,跟上面一样,替代节点为其父节点的左孩子与右孩子的情况类似,所以这里只说其为左孩子的情景(PS:上一步的寻找替换节点使用的是右子树的最左节点,所以该节点如果有孩子,只能是右孩子):

情景1:只有右孩子且为红色,直接用右孩子替换该节点然后变成黑色即可。

情景2:只有右孩子且为黑色,那么删除该节点会导致父节点的左子树路径上黑色节点减一,此时只能去借助右子树,从右子树中借一个红色节点过来即可,具体取决于右子树的情况,这里又分成两种:
i.兄弟节点是红色,则此时父节点是黑色,且兄弟节点肯定有两个孩子,且兄弟节点的左右子树路径上均有两个黑色节点,此时只需将兄弟节点与父节点颜色互换,然后将父节点左旋,左旋后,兄弟节点的左子树SL挂到了父节点p的右孩子位置,这时会导致p的右子树路径上的黑色节点比左子树多一,此时再SL置为红色即可。

ii.兄弟节点是黑色,那么就只能打它孩子的主意了,这里主要关注远侄子(兄弟节点的右孩子,即SR)的颜色情况,这里分成两种情况:
a.远侄子SR是黑色,近侄子任意(白色代表颜色可为任意颜色),则先将S转为红色,然后右旋,再将SL换成P节点颜色,P涂成黑色,S也涂成黑色,再进行左旋即可。其实简单说就是SL上位,替换父节点位置。

b.远侄子SR为红色,近侄子任意(该子树路径中有且仅有一个黑色节点),则先将兄弟节点与父节点颜色互换,将SR涂成黑色,再将父节点左旋即可。

删除的代码实现:

  1. 二叉搜索树的删除,
  /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab, boolean movable) {
 
       int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
 
     //p是待删除节点,replacement用于后续的红黑树调整,指向的是p或者p的继承者。
     //如果p是叶子节点,p==replacement,否则replacement为p的右子树中最左节点
     if (replacement != p) {
        //若p不是叶子节点,则让replacement的父节点指向p的父节点
        TreeNode<K,V> pp = replacement.parent = p.parent;
        if (pp == null)
            root = replacement;
        else if (p == pp.left)
            pp.left = replacement;
        else
            pp.right = replacement;
        p.left = p.right = p.parent = null;
    }
 
    //若待删除的节点p时红色的,则树平衡未被破坏,无需进行调整。
    //否则删除节点后需要进行调整
    TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
 
    //p为叶子节点,则直接将p从树中清除
    if (replacement == p) {  // detach
        TreeNode<K,V> pp = p.parent;
        p.parent = null;
        if (pp != null) {
            if (p == pp.left)
                pp.left = null;
            else if (p == pp.right)
                pp.right = null;
        }
    }
     if (movable)
        moveRootToFront(tab, r);
}
  1. 红黑树的删除调整。
 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x) {
    for (TreeNode<K,V> xp, xpl, xpr;;)  {
        //x为空或x为根节点,直接返回
        if (x == null || x == root)
            return root; 
        //x为根节点,染成黑色,直接返回(因为调整过后,root并不一定指向删除操作过后的根节点,如果之前删除的是root节点,则x将成为新的根节点)
        else if ((xp = x.parent) == null) {
            x.red = false; 
            return x;
        }
        //如果x为红色,则无需调整,返回
        else if (x.red) {
            x.red = false;
            return root; 
        }
        //x为其父节点的左孩子
        else if ((xpl = xp.left) == x) {
            //如果它有红色的兄弟节点xpr,那么它的父亲节点xp一定是黑色节点
            if ((xpr = xp.right) != null && xpr.red) { 
                xpr.red = false;
                xp.red = true; 
                //对父节点xp做左旋转
                root = rotateLeft(root, xp); 
                //重新将xp指向x的父节点,xpr指向xp新的右孩子
                xpr = (xp = x.parent) == null ? null : xp.right; 
            }
            //如果xpr为空,则向上继续调整,将x的父节点xp作为新的x继续循环
            if (xpr == null)
                x = xp; 
            else {
                //sl和sr分别为其近侄子和远侄子
                TreeNode<K,V> sl = xpr.left, sr = xpr.right;
            
                if ((sr == null || !sr.red) &&
                    (sl == null || !sl.red)) {
                    xpr.red = true; //若sl和sr都为黑色或者不存在,即xpr没有红色孩子,则将xpr染红
                    x = xp; //本轮结束,继续向上循环
                }
                else {
                    //否则的话,就需要进一步调整
                    if (sr == null || !sr.red) { 
                        if (sl != null) //若左孩子为红,右孩子不存在或为黑
                            sl.red = false; //左孩子染黑
                        xpr.red = true; //将xpr染红
                        root = rotateRight(root, xpr); //右旋
                        xpr = (xp = x.parent) == null ?
                            null : xp.right;  //右旋后,xpr指向xp的新右孩子,即上一步中的sl
                    }
                    if (xpr != null) {
                        xpr.red = (xp == null) ? false : xp.red; //xpr染成跟父节点一致的颜色,为后面父节点xp的左旋做准备
                        if ((sr = xpr.right) != null)
                            sr.red = false; //xpr新的右孩子染黑,防止出现两个红色相连
                    }
                    if (xp != null) {
                        xp.red = false; //将xp染黑,并对其左旋,这样就能保证被删除的X所在的路径又多了一个黑色节点,从而达到恢复平衡的目的
                        root = rotateLeft(root, xp);
                    }
                    //到此调整已经完毕,进入下一次循环后将直接退出
                    x = root;
                }
            }
        }
        //x为其父节点的右孩子,跟上面类似
        else { // symmetric
            if (xpl != null && xpl.red) {
                xpl.red = false;
                xp.red = true;
                root = rotateRight(root, xp);
                xpl = (xp = x.parent) == null ? null : xp.left;
            }
            if (xpl == null)
                x = xp;
            else {
                TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                if ((sl == null || !sl.red) &&
                    (sr == null || !sr.red)) {
                    xpl.red = true;
                    x = xp;
                }
                else {
                    if (sl == null || !sl.red) {
                        if (sr != null)
                            sr.red = false;
                        xpl.red = true;
                        root = rotateLeft(root, xpl);
                        xpl = (xp = x.parent) == null ?
                            null : xp.left;
                    }
                    if (xpl != null) {
                        xpl.red = (xp == null) ? false : xp.red;
                        if ((sl = xpl.left) != null)
                            sl.red = false;
                    }
                    if (xp != null) {
                        xp.red = false;
                        root = rotateRight(root, xp);
                    }
                    x = root;
                }
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值