P1219 [USACO1.5]八皇后 Checker Challenge

题目描述

一个如下的 6x6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列 2 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 6

列号 2 4 6 1 3 5

这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 3 个解。最后一行是解的总个数。

输入格式

一行一个正整数 n,表示棋盘是 n×n 大小的。

输出格式

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例

输入 #1

6

输出 #1

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4

说明/提示

【数据范围】
对于 100% 的数据,6≤n≤13。

题目翻译来自NOCOW。

USACO Training Section 1.5

 问题求解

问题的本质是,在一个点上选择放上棋子,则其同一行,列,两条对角线上都不能再有棋子了,但是每一列只有一个皇后,所以我们可以把一个二维的图变成一维,即每次搜索皇后的时候就算是考虑了这一列的情况。

那么我们需要对枚举到的每一个位置都进行判断,看同一行,以及两条对角线上是否有其他棋子,如若可以,就记录下这个位置并进行下一次搜索,直到所有棋子都可放完输出结果。

说的很简单哈,但是还是有很多要注意的地方。

主要是搜索两条对角线,很让人犯难,我们用图解释一下找对角线

 

这是形如y=x+b的图像,我们可以看到,b=y-x;如若是y=-x+b的则b=x+y

对于一条从左上到右下的对角线,其上的棋子坐标应满足x+y为一定值;

对于一条从右上到左下的对角线,其上的棋子坐标应满足x-y为一定值,为了避免负数的产生,应变为n+i-u

代码实现

#include <iostream>
using namespace std;
const int N = 20;
bool hang[N], dg[N], udg[N];//行和对角线的判重数组
int map[N]; //降维后的图
int n;
int s = 0,ans=0;
void dfs(int u) {
	if (u==n)//条件满足就输出
	{
		s++;
		if (s<=3)
		{
			for (int i = 0; i < n; i++)
			{
				printf("%d ", map[i]);
			}
			puts("");
		}
		ans++;
		return;
	}
	for (int i = 1; i <= n; i++)
	{
		if (!hang[i] && !dg[u+i]&&!udg[n-u+i])//判断是否满足棋子立足条件
		{
			map[u] = i;//储存此点的方案
			hang[i] = dg[u + i] = udg[n - u + i] = true;//更新状态,表示此点用过
			dfs(u + 1);
			hang[i] = dg[u + i] = udg[n - u + i] = false;//走完后回溯恢复现场
			
		}
	}
}
int main() {
	cin >> n;
	dfs(0);
	printf("%d", ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值