题目描述
一个如下的 6x6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 3 个解。最后一行是解的总个数。
输入格式
一行一个正整数 n,表示棋盘是 n×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入 #1
6
输出 #1
2 4 6 1 3 5 3 6 2 5 1 4 4 1 5 2 6 3 4
说明/提示
【数据范围】
对于 100% 的数据,6≤n≤13。
题目翻译来自NOCOW。
USACO Training Section 1.5
问题求解:
问题的本质是,在一个点上选择放上棋子,则其同一行,列,两条对角线上都不能再有棋子了,但是每一列只有一个皇后,所以我们可以把一个二维的图变成一维,即每次搜索皇后的时候就算是考虑了这一列的情况。
那么我们需要对枚举到的每一个位置都进行判断,看同一行,以及两条对角线上是否有其他棋子,如若可以,就记录下这个位置并进行下一次搜索,直到所有棋子都可放完输出结果。
说的很简单哈,但是还是有很多要注意的地方。
主要是搜索两条对角线,很让人犯难,我们用图解释一下找对角线
这是形如y=x+b的图像,我们可以看到,b=y-x;如若是y=-x+b的则b=x+y
对于一条从左上到右下的对角线,其上的棋子坐标应满足x+y为一定值;
对于一条从右上到左下的对角线,其上的棋子坐标应满足x-y为一定值,为了避免负数的产生,应变为n+i-u
代码实现
#include <iostream>
using namespace std;
const int N = 20;
bool hang[N], dg[N], udg[N];//行和对角线的判重数组
int map[N]; //降维后的图
int n;
int s = 0,ans=0;
void dfs(int u) {
if (u==n)//条件满足就输出
{
s++;
if (s<=3)
{
for (int i = 0; i < n; i++)
{
printf("%d ", map[i]);
}
puts("");
}
ans++;
return;
}
for (int i = 1; i <= n; i++)
{
if (!hang[i] && !dg[u+i]&&!udg[n-u+i])//判断是否满足棋子立足条件
{
map[u] = i;//储存此点的方案
hang[i] = dg[u + i] = udg[n - u + i] = true;//更新状态,表示此点用过
dfs(u + 1);
hang[i] = dg[u + i] = udg[n - u + i] = false;//走完后回溯恢复现场
}
}
}
int main() {
cin >> n;
dfs(0);
printf("%d", ans);
return 0;
}