之前没正式接触过算法,突然面对算法复杂度的计算,作为小白有点蒙,查阅众多资料和博客后做以下笔记。
来源:百度百科
算法复杂度是指算法在编写成可执行程序后,运行时所需要的资源,资源包括时间资源和内存资源。应用于数学和计算机导论。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
1、关于一些符号表示
n、T(n)、f(n): n为问题的规模,T(n)是一个算法中的语句执行次数称为语句频度或时间频度。当n不断变化时,时间频度T(n)也会不断变化。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),存在一个正常数c使得f(n)*c>=T(n)恒成立。记作T(n)=O(f(n)),说明在趋向无穷的极限意义下,函数T(n)的增长速度受到f的约束,f是g的渐进函数。O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
2、最基本的遵循规则 (顺序组合、条件分支和循环结构)
- 基本操作,认为其时间复杂度为O(1)。如果是函数调用,应该将其时间复杂度代入,参与整体i时间复杂度的计算。
实例:
无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1),如:
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;
- 加法规则(顺序复合)。如果算法(或所考虑算法片段)是两个部分(或多个部分)的顺序复合,其复杂性是这两部分(或多部分)的复杂性之和。以两个部分为例:
T ( n ) = T 1 ( n ) + T 2 ( n ) = O ( T 1 ( n ) ) + O ( T 2 ( n ) ) = O ( m a x ( T 1 ( n ) , T 2 ( n ) ) ) T(n) = T1(n) +T2(n)=O(T1(n))+O(T2(n))=O(max(T1(n),T2(n))) T(n)=T1(n)+T2(n)=O(T1(n))+O(T2(n))=O(max(T1(n),T2(n)))
其中T1(n) 、T2(n)分别为顺序复合的两个部分的时间复杂度。由于忽略了常量因子,加法等价于求最大值,取T1(n)和T2(n)中复杂度较高的一个。
实例:
for(i=1; i<=n; ++i)
{
j = i;
j++;
}
for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。
- 乘法规则(循环结构)。如果算法(或所考虑算法片段)是一个循环,循环体将执行T1(n)次,每次执行需要T2(n)时间,那么:
T ( n ) = T 1 ( n ) × T(n)=T1(n)\times T(n)=T1(n)× T2(n)= O(T1(n)) × \times × O(T2(n))=O(T1(n) × \times × T2(n)) - 取最大规则(分支结构)。如果算法(或考虑算法片段)是条件分支,两个分支的时间复杂度分别为T1(n)和T2(n),则有:
T ( n ) = O ( m a x ( T 1 ( n ) , T 2 ( n ) ) ) T(n)=O(max(T1(n),T2(n))) T(n)=O(max(T1(n),T2(n)))
综合实例:
程序片段:求出两个n × \times ×n矩阵m1和m2的乘积,存入另一个n × \times ×n矩阵m
for i in range(n):
for j in range(n):
x = 0.0
for k in range(n):
x = x + ml[i][k] * m2[k][j]
m[i][x] = x
这个程序片段是一个两重循环,循环体是一个顺序语句,其中还有一个内嵌的循环。根据复杂度计算规则,可以做以下推导:
T
(
n
)
=
O
(
n
)
×
O
(
n
)
×
(
O
(
1
)
+
O
(
n
)
×
T(n)=O(n)\times O(n)\times(O(1)+O(n)\times
T(n)=O(n)×O(n)×(O(1)+O(n)×O(1)+O(1) )
=
O
(
n
)
×
O
(
n
)
×
O
(
n
)
=O(n)\times O(n)\times O(n)
=O(n)×O(n)×O(n)
=
O
(
n
×
n
×
n
)
=O(n\times n\times n)
=O(n×n×n)
=
O
(
n
3
)
=O(n^3)
=O(n3)
其中
(
O
(
1
)
+
O
(
n
)
×
(O(1)+O(n)\times
(O(1)+O(n)×O(1)+O(1) )部分表示循环体的复杂度,包括两个基本的语句和一个简单的循环体,化简后可得O(n)
3、最常用的渐进复杂度函数
O ( 1 ) O(1) O(1)、 O ( l o g n ) O(logn) O(logn)、 O ( n ) O(n) O(n)、 O ( n l o g n ) O(nlogn) O(nlogn)、 O ( n 2 ) O(n^2) O(n2)、 O ( n 3 ) O(n^3) O(n3)、 O ( 2 n ) O(2^n) O(2n)
对数阶( O ( l o g n ) O(logn) O(logn))
int i = 1;
while(i<n)
{
i = i * 2;
}
从上面代码可以看到,在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。我们试着求解一下,假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = l o g 2 n x = log2^n x=log2n这个代码就结束了。因此这个代码的时间复杂度为:O(logn)
线性对数阶( n l o g n nlogn nlogn)
线性对数阶 O ( n l o g n ) O(nlogn) O(nlogn) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O ( l o g n ) O(logn) O(logn),也就是了 O ( n l o g n ) O(nlogn) O(nlogn)。
for(m=1; m<n; m++)
{
i = 1;
while(i<n)
{
i = i * 2;
}
}
4、递归算法的复杂度
[递归时间复杂度终结篇]
(https://blog.csdn.net/w36680130/article/details/81535128)
References:
(https://blog.csdn.net/jsjwk/article/details/84315770)