import numpy as np
import random
array=np.array([[1,2,3],[2,3,4]],dtype=np.float)#dtype:定义列表内存储的数据类型
zero=np.zeros((3,4))
one=np.ones((3,4),dtype=np.int16)
ar=np.arange(12).reshape((3,4))#reshape((x,y))将列表重新构造成为长宽为(x,y)的列表
linspace=np.linspace(1,10,7)#从1到10,长度为9,分成7个节点,6个线段
print(linspace)
print(ar)
print(array.dtype)
print(zero)
print(one)
print('number of dim:',array.ndim)#维度的数量 dim:维度
print('shape:',array.shape)
print('size:',array.size)
a=np.arange(4).reshape((4,1))
b=np.arange(4).reshape((1,4))
# print(a)
# print(b)
print(a.dot(b))
# print(a,'*',b,'=',np.dot(a,b),sep='\n')
import numpy as np
a=np.array([1,2,3])
b=np.array([[2,3,4],[3,4,5]])
print(np.sum(a,axis=0))
print(np.sum(b,axis=0))#axis这个属性的定义是基于数组.shape 的这个属性
print(np.sum(b,axis=1))#它是一个Python元组,对于二维数组而言,axis=0表示这个元组的第一个元素,axis=1表示第二个元素
A=np.arange(14,2,-1).reshape((3,4))
print(A)
# print(np.mean(A))#平均数
# print(np.median(A))#中位数
# print(np.cumsum(A))#前n项和
# print(np.diff(A))#相邻数的差
# print(np.nonzero(A))#非0数的行和列的列表
# print(np.sort(A))#排序
# print(A.T.dot(A))#矩阵倒置
print(np.clip(A,5,9))#使得A中的元素皆保留在[x,y]范围中,超出范围的取x或y
1、numpy中的基本单位是array,一切要处理的数据类型皆用array函数创造
创造类型有几种方法:
(1)np.array([]):这种方法是构造一个类似于列表的array对象,一维为向量,二维是矩阵
(2)np.arange((i,j)).reshape((x,y)):创造一个范围是[ i , j ),形状是(x,y)的矩阵(或向量)
(3)np.zero((x,y)):创造一个x行 y列的全为0矩阵
(4)np.ones((x,y)): 创造一个x行 y列的全为1矩阵
(5)np.linspace(begin,end,num):创造一个范围是[begin,end),由num个点划分为num-1个数据的线段
常见属性有:
(1)dtype:定义列表内存储的数据类型,用于构造方法
(2)array.ndim:维度的数量 dim:维度
(3)array.shape:array的形状,返回的是元组,分别为(n维,...,2维,1维)的数量
(4)array.size:左右的元素数量
计算:
(1)A.dot(B):计算A与B的向量积
(2)A*B:计算A与B的数量积
(3)np.sum(a,axis=0 or 1):合并array,如为0合并行,为1合并列
(4)print(np.mean(A))#平均数
(5)print(np.median(A))#中位数
(6)print(np.cumsum(A))#前n项和
(7)print(np.diff(A))#相邻数的差
(8)print(np.nonzero(A))#非0数的行和列的列表
(9)print(np.sort(A))#排序
(10)print(A.T.dot(A))#矩阵倒置
(11)print(np.clip(A,5,9))#使得A中的元素皆保留在[x,y]范围中,超出范围的取x或y